当前位置:首页 > 一种聚氨酯弹性体制备论文
结晶性。在材料被拉伸时,拉伸应力使得软段分子链取向并且规整性提高,聚氨酯弹性体结晶性提高,材料的强度相应提高。硬段的极性越强,越有利于聚氨酯材料结晶后的晶格能的提高。对于聚醚型聚氨酯,随着硬段含量增加,极性基团增多,硬段分子间作用力增大,微相分离程度提高,硬段微区逐渐形成结晶,并且结晶度随硬段含量增加逐渐提高,材料的强度得到增强。 1.3.4软段结构对聚氨酯弹性体性能的影响
聚醚和聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能不同。聚氨酯弹性体的柔性(软)链段主要影响材料的弹性性能,并且对其低温和拉伸性能有显著的贡献。所以,软链段 Tg 参数是极其重要的,其次,结晶度、熔点和应变诱导结晶等也是影响其极限力学性能的因素。 极性强的聚酯做软段制成的聚氨酯弹性体及泡沫力学性能较好。因为,聚酯多元醇制成的聚氨酯含有极性大的酯基,这种聚氨酯材料内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分的与硬段上的极性基团形成氢键,使硬段相能更均匀的分布于软段相中,起到弹性交联点的作用。在室温下某些聚酯多元醇可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯材料的强度、耐油性、热氧老化性比 PPG 聚醚型聚氨酯材料的性能高,但耐水解性能比聚醚型的差。聚四氢呋喃(PTMG)型聚氨酯由于分子链结构规整,易形成结晶,强度与聚酯型聚氨酯不相上下。一般说来,聚醚型聚氨酯软段的醚基较易内旋转,具有较好的柔顺性,有优异的低温性能,并且聚醚多元醇链中不存在相对易于水解的酯基,其耐水解性比聚酯型聚氨酯好。聚醚软段的醚键的 α 碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反应。以聚丁二烯分子链为软段的聚氨酯,由于极性弱,软硬段间相容性差,弹性体强度较差。含有侧链的软段,由于位阻作用,氢键弱,结晶性差,强度比相同软段主链的无侧基聚氨酯差。软段的分子量对聚氨酯的力学性能有影响。一般说来,假定聚氨酯分子量相同,则聚氨酯材料的强度随着软段分子量的增加而降低;若软段为聚酯链,则聚材料的强度随着聚酯二醇分子量的增加而缓慢降低;若软段为聚醚链,则聚材料的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是由于酯型软段极性较高,分子间作用力较大,可部分抵消由于分子量增
大,软段含增加而导致聚氨酯材料强度降低的影响。而聚醚软段极性较弱,若分子量增大,相应聚氨酯中硬段的含量减小,导致材料强度下降。朱金华等人[9]合成了一系含有不同软段的聚氨酯嵌段共聚物及接枝共聚物,并测试了其动态力学性能,果表明,聚氨酯共聚物的相容性和大分子的链结构有关,接枝链的存在对聚氨嵌段共聚物相容性和阻尼性能有显著影响。一般软段分子量对聚氨酯弹性体耐性能和热老化性能的影响并不显著。软段的结晶性对线型聚氨酯结晶性有较大贡献。一般说来,结晶性对提高聚氨酯的强度是有利的。但有时结晶会降低材的低温柔韧性,并且结晶型聚合物常常不透明。为了避免结晶,可降低分子的整性,如采用共聚酯或共聚醚多元醇,或混合多元醇、混合扩链剂等。 1.3.5硬段对聚氨酯弹性体性能的影响
硬段结构是影响聚氨酯弹性体耐热性能的主要因素之一。构成聚氨酯弹性体段的二异氰酸酯和扩链剂的结构不同,对耐热性能也会产生影响。聚氨酯材料硬段由多异氰酸酯与扩链剂应后组成,含有氨基甲酸酯基、芳基、取代脲基强极性基团,通常芳香族异氰酸酯形成的刚性链段构象不易改变,常温下伸展棒状。硬段通常影响聚氨酯的高温性能,如软化、熔融温度。常用的二异氰酸酯为 TDI、MDI、IPDI、PPDI、NDI 等,常用醇为乙二醇、-丁二醇、己二醇等,常用胺为 MOCA、EDA、DETDA 等。选择硬链段类型要是根据期望的聚合物的力学性能,如最高使用温度、耐候性、溶解性等,当也要考虑其经济性。不同的二异氰酸酯结构可影响硬段的规整性,影响氢键的成,因而对弹性体的强度有较大的影响。一般来说,含芳环的异氰酸酯使硬段有更大的刚性,内聚能大,一般使弹性体的强度增加。
由二异氰酸酯和二元胺扩链剂构成的含有脲基的刚性链段,由于脲基的内聚很大,极易形成塑料微区,由这种刚性链段构成的聚氨酯极易发生微相分离。般来说,构成聚氨酯的刚性链段的刚性越大,越易发生微相分离,在聚氨酯中,刚性链段的含量越高,越易发生微相分离。
扩链剂关系到聚氨酯弹性体的硬段结构,对弹性体的性能影响较大。含芳环二元胺扩链的聚氨酯与脂肪族二元醇扩链的聚氨酯相比有较高的强度,是因为二元胺扩链剂能形成脲键,脲键的极性比氨酯键的强,而且脲键硬段
与聚醚软段间溶解度参数的差异较大,因此聚脲硬段与聚醚软段有更大的热力学不相容性,使得聚氨酯脲有更好的微相分离[10],因而二元胺扩链的聚氨酯比二元醇扩链的聚氨酯具有较高的力学强度、模量、粘弹性、耐热性,并且还具有较好的低温性能。浇注型聚氨酯弹性体多采用芳族二元胺做扩链剂就是因为由此制备的聚氨酯弹性体具有良好的综合性能。赧广杰等[11]研究报道,通过马来酸酐与多元醇反应形成羧基酯多元醇,然后再与其它单体如 TDI-80、交联剂以及扩链剂等反应,制备了含羧基的聚氨酯预聚体,将其分散于三乙醇胺的水溶液中,制成水性聚氨酯,并对扩链剂的种类和用量对树脂性能的影响进行了研究,发现胺基扩链剂比羟基扩链剂更有利于提高树脂的力学性能。以双酚 A 做扩链剂,不仅可以提高树脂的力学性能,还可以提高树脂的玻璃化温度,拓宽内耗峰的宽度,改善树脂皮革态的温度范围[12]。聚氨酯脲所使用的二胺类扩链剂的结构直接影响材料中的氢键、结晶、微相结构分离,并很大程度上决定了材料的性能[13]。随着硬段含量的增加,聚氨酯材料拉断强度和硬度逐渐增加,断裂伸长率下降。这是因为硬段形成的具有一定结晶度的相和由软段形成的无定型相之间存在微相分离,硬段的结晶区起到有效交联点的作用,同时,硬段的结晶区对软段无定型区还起到一种类似填料增强的作用当含量增加时,硬段所具有的在软段中产生的增强作用及有效交联作用增强,促使材料强度增大。 1.3.6交联对聚氨酯弹性体性能的影响
分子内适度的交联可使聚氨酯材料硬度、软化温度和弹性模量增加,断裂伸长率、永久变形和溶剂中的溶胀性降低。对于聚氨酯弹性体,适当交联,可制得力学强度优良、硬度高、富有弹性,且有优良耐磨、耐油、耐臭氧及耐热性等性能的材料。但若交联过度,可使拉伸强度、伸长率等性能下降。在嵌段聚氨酯弹性体中,化学交联作用分为两大类:(1)利用三官能团的扩链剂(如 TMP)形成交联结构;(2)利用过量的异氰酸酯,经反应生成缩二脲(经由脲基)或脲基甲酸酯(经由氨基甲酸酯基)交联。交联对氢键化程度有显著影响,交联的形成大大降低了材料的氢键化程度,但是与氢键引起的物理交联相比,化学交联具有较好的热稳定性。在用 FTIR、DSC 等手段研究了化学交联网络对聚氨酯脲弹性体的形态、力学性能及热性能的影响
时,发现不同交联网络的聚氨酯脲弹性体具有不同形态,随着交联密度的增加,弹性体的微相混合程度增加,软段的玻璃化转变温度显著增加,并且弹性体的 300%定伸强度逐渐增加,断裂伸长率逐渐减小,当化学交联网络较完善时,弹性体的力学性能(拉伸强度和撕裂强度)达到最高。
1.4阻燃机理[15]
高分子材料的燃烧是一个很复杂的过程,现在普遍认为由热、氧、可燃材料、自由基反应四个要素组成。从本质上讲,阻燃作用是通过减缓或阻止其中的一个或几个要素来实现,具体包括以下几方面: 1.4.1提高材料的热稳定性
从材料本身着手,提高材料的热稳定性或耐高温性是根本的阻燃途径。但实际中由于这类材料存在成本昂贵、加工困难等问题,批量生产和应用受到限制。
1.4.2捕捉自由基
高分子材料从热氧化分解到着火燃烧大多为自由基反应历程,在这些反应中就会产生活泼的自由基OH?,它决定着燃烧的速度。加入能参与自由基反应、阻止热分解产生链自由基的添加剂,使这些反应终止或改变反应历程。例如卤系阻燃剂,在燃烧时能产生Br?或Cl?,与高聚物热分解的关键物质H·反应生成稳定的化合物,使燃烧的连锁反应受到抑制。 1.4.3形成非可燃性的保护层
在高分子材料表面罩以非可燃性的保护层,隔热、隔氧,并阻止聚合物分解产生的可燃气体逸人燃烧气相。例如磷系阻燃剂在燃烧时形成磷酸,使聚合物脱水,在其表面形成碳化层,从而将热源与未燃的材料隔开。 1.4.4 吸收热量
高分子材料在开始燃烧和维持燃烧时都需要热量.若加人吸热后可分解的阻燃剂,则可维持聚合物处于较低温度而减缓或阻止燃烧。典型的例子是无机阻燃剂中带结晶水的金属氧化物,如Mg(OH)2、Al(OH)3。 1.4.5 形成重质气体隔离层
在高分子材料燃烧过程中,有些阻燃剂可释放出重质气体,覆盖在聚合物表面,影响热氧化分解产生的可燃气体与氧气的正常交换而窒息火焰。例
共分享92篇相关文档