当前位置:首页 > 2019年甘肃省兰州市中考数学试卷(a卷)-真题试卷
解此题的关键.
20.(6分)如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.
【分析】要证明AC∥DF,只要证明∠ACB=∠DFE即可,要证明∠ACB=∠DFE,只要证明△ABC≌△DEF即可,根据题目中的条件可以证明△ABC≌△DEF,本题得以解决.
【解答】证明:∵BF=EC, ∴BF+FC=EC+FC, ∴BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.
【点评】本题考查全等三角形的判定与性质、平行线的判定,解答本题的关键是明确题意,找出所求问题的条件,利用数形结合的思想解答.
21.(6分)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强﹣﹣国学知识挑战赛”总决赛拉开序幕.小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中各选一道题目.
第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示); 第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示). (1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果; (2)求小明参加总决赛抽取题目是成语题目(成语故事、成语接龙、成语听写)的概率. 【分析】(1)利用画树状图展示所有12种等可能的结果数;
(2)找出小明参加总决赛抽取题目是成语题目的结果数,然后根据概率公式计算即可. 【解答】解:(1)画树状图为:
共有12种等可能的结果数;
(2)小明参加总决赛抽取题目是成语题目的结果数为2,
所以小明参加总决赛抽取题目是成语题目(成语故事、成语接龙、成语听写)的概率==.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
22.(7分)如图,AC=8,分别以A、C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A、B、C、D,连接BD交AC于点O. (1)判断四边形ABCD的形状并说明理由; (2)求BD的长.
【分析】(1)利用作法得到四边相等,从而可判断四边形ABCD为菱形;
(2)根据菱形的性质得OA=OC=4,OB=OD,AC⊥BD,然后利用勾股定理计算出OB,从而得到BD的长.
【解答】解:(1)四边形ABCD为菱形; 由作法得AB=AD=CB=CD=5, 所以四边形ABCD为菱形; (2)∵四边形ABCD为菱形, ∴OA=OC=4,OB=OD,AC⊥BD, 在Rt△AOB中,OB=∴BD=2OB=6.
【点评】本题考查了菱形的判定:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形.也考查了菱形的性质.
=3,
23.(7分)如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA. (1)求反比例函数y=(k≠0)的表达式; (2)若四边形ACBO的面积是3
,求点A的坐标.
【分析】(1)作BD⊥OC于D,根据等边三角形的性质和勾股定理求得OD=1,BD=进而求得三角形BOD的面积,根据系数k的几何意义即可求得k=函数的表达式;
(2)求得三角形AOC的面积,即可求得A的纵坐标,代入解析式求得横坐标,得出点A的坐标.
【解答】解:(1)作BD⊥OC于D, ∵△BOC是等边三角形, ∴OB=OC=2,OD=OC=1, ∴BD=
=
, ,
,
,从而求得反比例
∴S△OBD=OD×BD=S△OBD=|k|, ∴|k|=
,
∵反比例函数y=(k≠0)的图象在一三象限, ∴k=
,
;
=
,
∴反比例函数的表达式为y=(2)∵S△OBC=OC?BD=∴S△AOC=3
﹣
=2
,
∵S△AOC=OC?yA=2∴yA=2把y=2
, 代入y=
,
,求得x=,
).
∴点A的坐标为(,2
【点评】本题考查了待定系数法求反比例函数的解析式,反比例系数k的几何意义,反比例函数图象上点的坐标特征,此题的突破点是先由三角形的面积求出反比例函数的解析式.
24.(7分)为了解某校八年级学生一门课程的学习情况,小佳和小丽分别对八年级1班和2班本门课程的期末成绩进行了调查分析.
小佳对八年级1班全班学生(25名)的成绩进行分析,过程如下: 收集、整理数据: 表一
分数段 班级 八年级1班 分析数据: 表二
统计量 班级 八年级1班
78
80
85
36
105.28
平均数
中位数
众数
极差
方差
7
5
10
3
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
小丽用同样的方法对八年级2班全班学生(25名)的成绩进行分析,数据如下: 表三
统计量
平均数
中位数
众数
极差
方差
共分享92篇相关文档