云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 【人教版】2020高中数学 课时分层作业14 综合法和分析法 新人教A版选修2-2

【人教版】2020高中数学 课时分层作业14 综合法和分析法 新人教A版选修2-2

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 9:38:00

※ 精 品 ※ 试 卷 ※

课时分层作业(十四) 综合法和分析法

(建议用时:40分钟)

[基础达标练]

一、选择题

1x1.证明命题“f(x)=e+x在(0,+∞)上是增函数”,一个同学给出的证法如下:

e11xx∵f(x)=e+x,∴f′(x)=e-x.

ee1x∵x>0,∴e>1,0

e1x∴e-x>0,

e

即f′(x)>0,∴f(x)在(0,+∞)上是增函数. 他使用的证明方法是( )

【导学号:31062147】

A.综合法 C.反证法

B.分析法 D.以上都不是

A [该证明方法符合综合法的定义,应为综合法.故选A.]

2.设P=2,Q=7-3,R=6-2,那么P,Q,R的大小关系是

( )

A.P>Q>R C.Q>P>R

B.P>R>Q D.Q>R>P

B [先比较R,Q的大小,可对R,Q作差,即Q-R=7-3-(6-2)=(7+2)-(3+6). 又(7+2)-(3+6)=214-218<0, ∴Q<R,由排除法可知,选B.]

333

3.要证a-b<a-b成立,a,b应满足的条件是( ) A.ab<0且a>b B.ab>0且a>b C.ab<0有a<b

D.ab>0且a>b或ab<0且a<b 333

D [要证a-b<a-b, 33333

只需证(a-b)<(a-b), 3232

即证a-b-3ab+3ab<a-b,

※ 推 荐 ※ 下 载 ※

2

2

※ 精 品 ※ 试 卷 ※

3232

即证ab<ab,

只需证ab<ab,即证ab(b-a)<0. 只需ab>0且b-a<0或ab<0,且b-a>0. 故选D.]

4.下面的四个不等式:

1222

①a+b+c≥ab+bc+ca;②a(1-a)≤;

4③+≥2;④(a+b)·(c+d)≥(ac+bd). 其中恒成立的有( ) A.1个 C.3个

B.2个 D.4个

2

2

baab22222

1222222

C [∵(a+b+c)-(ab+bc+ac)=[(a-b)+(b-c)+(c-a)]≥0,

2

a(1-a)-=-a2+a-=-?a-?2≤0,

2

1414

??

1??

(a+b)·(c+d)=ac+ad+bc+bd ≥ac+2abcd+bd=(ac+bd).∴应选C.]

14y2

5.若两个正实数x、y满足+=1,且不等式x+

xy4

【导学号:31062148】

A.(-1,4) C.(-4,1)

14

B [∵x>0,y>0,+=1,

B.(-∞,-1)∪(4,+∞) D.(-∞,0)∪(3,+∞)

22

22

2

222222222222

xyy?y??14?y4x∴x+=?x+??+?=2++

4?4??xy?4xy≥2+2y4x·=4, 4xy等号在y=4x,即x=2,y=8时成立, ∴x+的最小值为4,

4要使不等式m-3m>x+有解,

4应有m-3m>4,

∴m<-1或m>4,故选B.] 二、填空题

※ 推 荐 ※ 下 载 ※

2

2

yy※ 精 品 ※ 试 卷 ※

6.如图2-2-2所示,四棱柱ABCD-A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).

图2-2-2

[解析] 要证BD⊥A1C,只需证BD⊥平面AA1C. 因为AA1⊥BD,只要再添加条件AC⊥BD, 即可证明BD⊥平面AA1C,从而有BD⊥A1C. [答案] AC⊥BD(答案不唯一)

7.已知sin α+sin β+sin r=0,cos α+cos β+cos r=0,则cos(α-β)的值为________.

【导学号:31062149】

[解析] 由sin α+sin β+sin r=0,cos α+cos β+cos r=0,得sin α+sin β=-sin r,cos α+cos β=-cos r,

1两式分别平方,相加得2+2(sin αsin β+cos αcos β)=1,所以cos(α-β)=-.

21

[答案] - 2

1

8.设a>0,b>0,则下面两式的大小关系为lg(1+ab)________[lg(1+a)+lg(1+b)].

2

[解析] ∵(1+ab)-(1+a)(1+b) =1+2ab+ab-1-a-b-ab =2ab-(a+b)=-(a-b)≤0. ∴(1+ab)≤(1+a)(1+b),

1

∴lg(1+ab)≤[lg(1+a)+lg(1+b)].

2[答案] ≤ 三、解答题

9. 设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,求证:+=2. [证明] 由已知条件得b=ac, 2x=a+b,2y=b+c. ①

要证+=2,只要证ay+cx=2xy, 只要证2ay+2cx=4xy. ②

由①②得2ay+2cx=a(b+c)+c(a+b)=ab+2ac+bc, 4xy=(a+b)(b+c)=ab+b+ac+bc=ab+2ac+bc, 所以2ay+2cx=4xy.命题得证.

※ 推 荐 ※ 下 载 ※

22

2

2

2

acxyacxy※ 精 品 ※ 试 卷 ※

10. 设a>0,b>0,2c>a+b,求证: (1)c2

>ab;

(2)c-c2

-ab<a<c+c2

-ab.

[证明] (1)∵a>0,b>0,2c>a+b≥2ab, ∴c>ab, 平方得c2>ab;

(2)要证c-c2

-ab<a<c+c2

-ab. 只要证-c2-ab<a-c<c2-ab. 即证|a-c|<c2

-ab, 即(a-c)2

<c2

-ab,

∵(a-c)2

-c2

+ab=a(a+b-2c)<0成立, ∴原不等式成立.

[能力提升练]

1.已知函数f(x)=??1?2??x+

?,a、b∈R,A=f??a+b?2???,B=f(ab),C=f??2ab?a+b??

?

,则A、B、C的大小关系为( A.A≤B≤C B.A≤C≤B C.B≤C≤A

D.C≤B≤A

A [ a+b2≥ab≥2aba+b,又函数f(x)=??1?2??x?在(-∞,+∞)上是单调减函数,

∴f?

?a+b?2???≤f(ab)≤f??2ab?a+b???

. 即A≤B≤C.]

2.若a、b、c∈R,且ab+bc+ca=1,则下列不等式成立的是( ) A.a2

+b2

+c2

≥2 B.(a+b+c)2

≥3 C.1a+11

b+c≥23

D.abc(a+b+c)≤1

3

B [∵a、b、c∈R,∴a2

+b2

≥2ab,

b2+c2≥2bc,a2+c2≥2ac,

∴a2

+b2

+c2

≥ab+bc+ac=1,

又(a+b+c)2

=a2

+b2

+c2

+2ab+2bc+2ac =a2

+b2

+c2+2≥3.] 3.若对任意x>0,

xx2+3x+1

≤a恒成立,则a的取值范围是________.

推 荐 ※ 下 载 ※

) ※

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

※ 精 品 ※ 试 卷 ※ 课时分层作业(十四) 综合法和分析法 (建议用时:40分钟) [基础达标练] 一、选择题 1x1.证明命题“f(x)=e+x在(0,+∞)上是增函数”,一个同学给出的证法如下: e11xx∵f(x)=e+x,∴f′(x)=e-x. ee1x∵x>0,∴e>1,00, e即f′(x)>0,∴f(x)在(0,+∞)上是增函数. 他使用的证明方法是( ) 【导学号:31062147】 A.综合法 C.反证法 B.分析法 D.以上都不是 A [该证明方法符合综合法的定义,应为综合法.故选A.] 2.设P=2,Q=

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com