云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > A全等三角形之手拉手模型倍长中线-截长补短法2

A全等三角形之手拉手模型倍长中线-截长补短法2

  • 62 次阅读
  • 3 次下载
  • 2025/5/31 2:31:35

手拉手模型

要点一:手拉手模型

特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点

结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA平分∠BOC 变形:

例1.如图在直线ABC的同一侧作两个等边三角形?ABD与?BCE,连结AE与CD,证明 (1)?ABE??DBC (2)AE?DC

(3)AE与DC之间的夹角为60? (4)?AGB??DFB (5)?EGB??CFB (6)HB平分?AHC (7)GF//AC

变式精练1:如图两个等边三角形?ABD与?BCE,连结AE与

CD,

证明(1)?ABE??DBC (2)AE?DC

(3)AE与DC之间的夹角为60?

(4)AE与DC的交点设为H,BH平分?AHC

变式精练2:如图两个等边三角形?ABD与?BCE,连结AE与CD, 证明(1)?ABE??DBC (2)AE?DC

(3)AE与DC之间的夹角为60?

(4)AE与DC的交点设为H,HB平分?AHC

例2:如图,两个正方形ABCD与DEFG,连结AG,CE,二者相交于点H

问:(1)?ADG??CDE是否成立? (2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度? (4)HD是否平分?AHE?

例3:如图两个等腰直角三角形ADC与EDG,连结AG,CE,二者相交于点H 问:(1)?ADG??CDE是否成立? (2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度? (4)HD是否平分?AHE?

例4:两个等腰三角形?ABD与?BCE,其中AB?BD,CB?EB,?ABD??CBE??,连结AE与CD,

问:(1)?ABE??DBC是否成立? (2)AE是否与CD相等?

(3)AE与CD之间的夹角为多少度? (4)HB是否平分?AHC?

例5:如图,点A. B. C在同一条直线上,分别以AB、BC为边在直线AC的同侧作等边三角形△ABD、△BCE.连接AE、DC,AE与DC所在直线相交于F,连接FB.判断线段FB、FE与FC之间的数量关系,并证明你的结论。

【练1】如图,三角形ABC和三角形CDE都是等边三角形,点A,E,D,同在一条直线上,且角EBD=62°,求角AEB的度数

倍长与中点有关的线段

倍长中线类

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

手拉手模型 要点一:手拉手模型 特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA平分∠BOC 变形: 例1.如图在直线ABC的同一侧作两个等边三角形?ABD与?BCE,连结AE与CD,证明 (1)?ABE??DBC (2)AE?DC (3)AE与DC之间的夹角为60? (4)?AGB??DFB (5)?EGB??CFB (6)HB平分?AHC (7)GF//AC 变式精练1:如图两个等边三角形?ABD与?BCE,连结AE与CD, 证明(1)?ABE??DBC (2)AE?DC

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com