当前位置:首页 > 专题17 概率与统计(押题专练)-2018年高考理数二轮复习精品资料(原卷版)
学习积极性高 学习积极性一般 合计 18 6 24 7 19 26 25 25 50 (1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由. n(ad-bc)2
参考公式与临界值表:K=.
(a+b)(c+d)(a+c)(b+d)
2
P(K2≥k) k 0.100 2.706 0.050 3.841 0.025 5.024 0.010 6.635 0.001 10.828 22.根据某电子商务平台的调查统计显示,参与调查的1 000位上网购物者的年龄情况如图所示.
(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;
(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和X(单位:元)的分布列与数学期望.
23.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(0,2],(2,4],(4,6],(6,8],(8,10]分别加以统计,得到如图所示的频率分布直方图.
(1)根据女性频率分布直方图估计女性使用微信的平均时间;
(2)若每天玩微信超过4小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”?
24.某校高一(1)、(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动.主持人从这两个班分别随机选出20名同学进行当场测试,他们的成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,分别用频率分布直方图茎叶图统计如下(单位:分): (1)班20名同学成绩频率分布直方图
(2)班20名同学成绩茎叶图
(1)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(2)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列.(频率当作概率使用)
25.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果.期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 甲班频数 乙班频数 [50,59) 5 1 [60,69) 6 3 [70,79) 4 6 [80,89) 4 5 [90,100] 1 5 (1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
成绩优良 成绩不优良 总计 2
甲班 乙班 总计 n(ad-bc)2附:K=,其中n=a+b+c+d.
(a+b)(c+d)(a+c)(b+d)临界值表:
P(K2≥k0) k0
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.
0.10 2.706 0.05 3.841 0.025 5.024 0.010 6.635
共分享92篇相关文档