云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)

  • 62 次阅读
  • 3 次下载
  • 2025/6/4 20:58:04

2.3组合截面的惯性矩

1.惯性矩和惯性积的平行移轴公式

任意平面图形如图2-2.3所示。z、y为一对正交的形心轴,z1、y1为与形心轴平行的另一对正交轴,平行轴间的距离分别为a和b。已知图形对形心轴的惯性矩Iz、Iy和惯性积Izy,现求图形对z1、y1轴的惯性矩Iz1、Iy1和惯性积Iz1y1。有惯性矩和惯性积的平行移轴公式如式(2—2.12)和式(2—2.13)

(2—2.12)

Iz1y1=Izy+abA (2—2.13)

可见,图形对于形心轴的惯性矩是对所有平行轴的惯性矩中最小的一个。在应用平行移轴公式(2—2.12)时,要注意应用条件,即y、z轴必须是通过形心的轴,且z1、y1轴必须分别与z、y轴平行。在应用式(2—2.13)计算惯性积时,还须注意a、b的正负号,它们是截面形心c在z1oy1坐标系中的坐标值。

2.组合截合惯性矩计算

组合图形对某一轴的惯性矩,等于其各组成部分简单图形对该轴惯性矩之和,如式(2—2.14)

(2—2.14)

在计算组合图形对z、y轴的惯性矩时,应先将组合图形分成若干个简单图形,并计算出每一简单图形对平行于z、y轴的自身形心轴的惯性矩,然后利用平行移轴公式

(2—2.12)计算出各简单图形对z、y轴的惯性矩,最后利用式(2—2.14)求总和。

2.4主惯性轴和主惯性矩

过图形上任一点都可得到一对主轴,通过截面图形形心的主惯性轴,称为形心主轴,图形对形心主轴的惯性矩称为形心主惯性矩。在对构件进行强度、刚度和稳定计算中,常常需要确定形心主轴和计算形心主惯性矩。因此,确定形心主轴的位置是十分重要的。由于图形对包括其对称轴在内的一对正交坐标轴的惯性积为零,所以对于如图6-4所示具有对称轴的截面图形,可根据图形具有对称轴的情况,观察确定形心主轴的位置。

(1)如果图形有一根对称轴,则此轴必定是形心主轴、而另一根形心主轴通过形心,并与对称轴垂直,如图2-34 b)、d)所示。

(2)如果图形有两根对称轴,则该两轴都为形心主轴,如图6-4 a)、c)所示。 (3)如果图形具有3根或更多根对称轴,过图形形心的任何轴都是形心主、轴,且图形对其任一形心主轴的惯性矩都相等,如图6-4 e)、f)所示。

图2-2.4具有对称轴的截面 图形

常用惯性矩公式:

搜索更多关于: 惯性矩总结(含常用惯性矩公式) 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2.3组合截面的惯性矩 1.惯性矩和惯性积的平行移轴公式 任意平面图形如图2-2.3所示。z、y为一对正交的形心轴,z1、y1为与形心轴平行的另一对正交轴,平行轴间的距离分别为a和b。已知图形对形心轴的惯性矩Iz、Iy和惯性积Izy,现求图形对z1、y1轴的惯性矩Iz1、Iy1和惯性积Iz1y1。有惯性矩和惯性积的平行移轴公式如式(2—2.12)和式(2—2.13) (2—2.12) Iz1y1=Izy+abA (2—2.13) 可见,图形对于形心轴的惯性矩是对所有平行轴的惯性矩中最小的一个。在应用平行移轴公式(2—2.12)时,要注意应用条件,即y、z轴必须是通过形心的轴,且z1、y1轴必须分别与z、y轴平行。在应用式(2—2.13)计算惯性积时,还须注意

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com