云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 人教版2020年高中数学第三章3.1.3二倍角的正弦、余弦、正切公式优化练习新人教A版必修4

人教版2020年高中数学第三章3.1.3二倍角的正弦、余弦、正切公式优化练习新人教A版必修4

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 11:41:17

2.已知α∈R,sin α+2cos α=4A. 33C.-

4

10

,则tan 2α=( ) 2

3B. 44D.- 3

解析:先利用条件求出tan α,再利用倍角公式求tan 2α.把条件中的式子两边平方,得53222

sinα+4sin αcos α+4cos α=,即3cosα+4sin αcos α=,

22

3cosα+4sin αcos α33+4tan α32

所以=,所以=,即3tanα-8tan α-3=0, 222cosα+sinα21+tanα212tan α3

解得tan α=3或tan α=-,所以tan 2α==-. 2

31-tanα4答案:C

1??2

3.已知方程x-?tan α+x+1=0的一个根是2+3,则sin 2α=________.

tan α???解析:由题意可知 (2+3)-?

22

?sin α+cos α?(2+3)+1=0, ??cos αsin α?

2

2

sinα+cosα即8+43-(2+3)=0,

sin αcos α所以(2+3)

=4(2+3),

1

sin 2α2

1

1

所以sin 2α=. 21答案:

24.设cos 2θ=244

,则cosθ+sinθ的值是________. 3

1144222222

解析:cosθ+sinθ=(cosθ+sinθ)-2cosθsinθ=1-sin2θ=1-(1-

22cos2θ)

1111?2?2112

=+cos2θ=+×??=. 2222?3?1811答案:

18

5.已知向量p=(cos α-5,-sin α),q=(sin α-5,cos α),p∥q,且α∈(0,π). (1)求tan 2α的值;

5

2

(2)求2sin?

2

?α+π?-sin ?α+π?.

???6??26??

解析:(1)由p∥q,

可得(cos α-5)cos α-(sin α-5)(-sin α)=0, 1

整理得sin α+cos α=.

5因为α∈(0,π),所以α∈?所以sin α-cos α =2-

sin α+cos α2

?π,π?,

?

?2?

7=, 5

434

解得sin α=,cos α=-,故tan α=-,

5532tan α24

所以tan 2α==. 2

1-tanα7π?π??2?α(2)2sin?+?-sin ?α+?

6??26??π?π???=1-cos ?α+?-sin ?α+?

3?6???

13318

=1-cos α+sin α-sin α-cos α=1-cos α=. 22225

6.已知向量a=(cos ωx-sin ωx,sin ωx),b=(-cos ωx-sin ωx,23cos ωx),设函数f(x)=a·b+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,

?1?且ω∈?,1?. ?2?

(1)求函数f(x)的最小正周期.

?π??3π?(2)若y=f(x)的图象经过点?,0?,求函数f(x)在区间?0,?上的取值范围.

5??4??

解析:(1)f(x)=a·b+λ=sinωx-cosωx+23sin ωxcos ωx+λ=3sin 2ωx-π??cos 2ωx+λ=2sin ?2ωx-?+λ,

6??且直线x=π是f(x)的图象的一条对称轴, ππ

所以2ωπ-=kπ+(k∈Z),

62

2

2

k1

所以ω=+.

23

5?1?又因为ω∈?,1?,所以ω=, 6?2?

6

所以f(x)的最小正周期为6π

5. (2)y=f(x)的图象经过点?

?π?4,0???

所以f??π?4???

=0,

即λ=-2sin ???2×56×ππ4-6??π?

=-2sin 4=-2, 则f(x)=2sin ??5π?3x-6???-2,又x∈??3π?

0,5???,

则5π?π5π??3π3x-6∈??-6,6??,所以函数f(x)在区间??0,?5??上的取值范围为[-1-2,2-2].

7

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2.已知α∈R,sin α+2cos α=4A. 33C.- 410,则tan 2α=( ) 23B. 44D.- 3解析:先利用条件求出tan α,再利用倍角公式求tan 2α.把条件中的式子两边平方,得53222sinα+4sin αcos α+4cos α=,即3cosα+4sin αcos α=, 223cosα+4sin αcos α33+4tan α32所以=,所以=,即3tanα-8tan α-3=0, 222cosα+sinα21+tanα212tan α3解得tan α=3或tan α=-,所以tan 2α==-. 231-tanα4答案:C 1??23.已知方程x-?tan α+

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com