当前位置:首页 > 中考精品:数学压轴题汇编(含解题过程,共67页) - 图文
冲刺中考数学压轴题汇编(含解题过程)
(2009年重庆市)26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6,那么5EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
y
A E x
D B O 26题图
C 0),D(2,2), 26.解:(1)由已知,得C(3,?ADE?90°??CDB??BCD,
1?AE?ADtan?ADE?2?tan?BCD?2??1.
2?E(0,1). ····························································································· (1分)
设过点E、D、C的抛物线的解析式为y?ax?bx?c(a?0). 将点E的坐标代入,得c?1.
将c?1和点D、C的坐标分别代入,得
2?4a?2b?1?2, ······················································································ (2分) ??9a?3b?1?0.5?a????6解这个方程组,得?
13?b??6?故抛物线的解析式为y??5213·················································· (3分) x?x?1. ·
66第 1 页 共 67 页
(2)EF?2GO成立. ············································································ (4分) 点M在该抛物线上,且它的横坐标为
6, 5y ?点M的纵坐标为
12. ··········································································· (5分) 5F A E x
设DM的解析式为y?kx?b1(k?0), 将点D、M的坐标分别代入,得
M D B 1?2k?b1?2,?k??,?? 解得2 ?6?12k?b1?.??5?b1?3.?5O G K C 1?DM的解析式为y??x?3. ······························································ (6分)
2?F(0,············································································· (7分) 3),EF?2. ·
过点D作DK⊥OC于点K, 则DA?DK.
?ADK??FDG?90°, ??FDA??GDK.
又?FAD??GKD?90°, ?△DAF≌△DKG. ?KG?AF?1.
··························································································· (8分) ?GO?1. ·
?EF?2GO. (3)
,0),C(3,0),则设P(1,2). 点P在AB上,G(1?PG2?(t?1)2?22,PC2?(3?t)2?22,GC?2.
①若PG?PC,则(t?1)?2?(3?t)?2,
22222),此时点Q与点P重合. 解得t?2.?P(2,?Q(2,2). ···························································································· (9分)
②若PG?GC,则(t?1)?2?2,
2?2,2),此时GP⊥x轴. 解得 t?1,?P(1GP与该抛物线在第一象限内的交点Q的横坐标为1,
?点Q的纵坐标为
7. 3第 2 页 共 67 页
?7??Q?1,?. ························································································ (10分)
?3?③若PC?GC,则(3?t)?2?2,
解得t?3,?P(3,2),此时PC?GC?2,△PCG是等腰直角三角形. 过点Q作QH⊥x轴于点H,
y 则QH?GH,设QH?h,
Q A E P Q (Q) (P) D B (P) 222?Q(h?1,h).
513??(h?1)2?(h?1)?1?h.
667解得h1?,h2??2(舍去).
5?127??Q?,?. ····································· (12分)
55??综上所述,存在三个满足条件的点Q,
O G H C x
即Q(2,2)或Q?1,?或Q?
?7??3??127?,?. ?55?(2009年重庆綦江县)26.(11分)如图,已知抛物线y?a(x?1)2?33(a?0)经过点
A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交
射线OM于点C,B在x轴正半轴上,连结BC. (1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止
M y 运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?D C 并求出最小值及此时PQ的长.
P
第 3 页 共 67 页
A O Q B x
*26.解:(1)
2抛物线y?a(x?1)?33(a?0)经过点A(?2,0),
?0?9a?33?a??3 ·············································································· 1分 3322383x?x? ··········································· 3分 333?二次函数的解析式为:y??(2)
33)过D作DN?OB于N,则DN?33, D为抛物线的顶点?D(1,··········································· 4分 AN?3,?AD?32?(33)2?6??DAO?60° ·
OM∥AD
①当AD?OP时,四边形DAOP是平行四边形
········································· 5分 ?OP?6?t?6(s) ·
y D M C ②当DP?OM时,四边形DAOP是直角梯形
A H P B x 过O作OH?AD于H,AO?2,则AH?1 O E N Q (如果没求出?DAO?60°可由Rt△OHA∽Rt△DNA求AH?1) ··············································································· 6分 ?OP?DH?5t?5(s) ·
③当PD?OA时,四边形DAOP是等腰梯形 ?OP?AD?2AH?6?2?4?t?4(s)
综上所述:当t?6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. · 7分
(3)由(2)及已知,?COB?60°,OC?OB,△OCB是等边三角形
?OQ?6?2t(0?t?3) 则OB?OC?AD?6,OP?t,BQ?2t,过P作PE?OQ于E,则PE?3t ······························································· 8分 2113?SBCPQ??6?33??(6?2t)?t
2223?3?63=··················································································· 9分 3 ·?t???2?2?8当t?23633 ·时,SBCPQ的面积最小值为························································ 10分
28第 4 页 共 67 页
共分享92篇相关文档