当前位置:首页 > 2019-2020学年河南省南阳市唐河县中考数学三模试卷(有标准答案)
...
的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上. (1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球? 21.根据下列要求,解答相关问题:
(1)请补全以下求不等式﹣2x﹣4x≥0的解集的过程 ①构造函数,画出图象:
根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示; ②数形结合,求得界点:
当y=0时,求得方程﹣2x2﹣4x=0的解为 ; ③借助图象,写出解集:
由图象可得不等式﹣2x2﹣4x≥0的解集为 .
(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集. ①构造函数,画出图象; ②数形结合,求得界点; ③借助图象,写出解集.
(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式ax+bx+c>0(a>0)的解集.
2
2
...
...
22.(1)问题发现:
(1)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC,请判断:FG与CE的数量关系是 ,位置关系是 . (2)拓展探究:
如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明; (3)类比延伸:
如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1. (1)求二次函数的解析式;
(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;
(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
...
...
河南省南阳市唐河县中考数学三模试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分) 1.数a的相反数是( ) A.|a| B.
C.﹣a D.
【考点】28:实数的性质.
【分析】根据相反数的定义进行选择即可. 【解答】解:∵数a的相反数是﹣a, ∴故选C.
2.2017年3月5日,李克强总理在十二届全国人大五次会议上作政府工作报告谈到,2016年我国国内生产总值达到74.4万亿元,增长6.7%,名列世界前茅.其中74.4万亿元用科学记数法表示为( ) A.7.44×10元 B.7.44×10元 C.74.4×10元 D.7.44×10元 【考点】1I:科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:74.4万亿=7.44×10, 故选:A.
3.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是( )
13
13
12
12
14
A.9 B.8 C.7 D.6
【考点】U3:由三视图判断几何体.
【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.
【解答】解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成, 故选B.
4.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是( )
...
...
A. B. C. D.
【考点】FD:一次函数与一元一次不等式;C4:在数轴上表示不等式的解集.
【分析】观察图象,直线y=kx+1落在直线y=﹣3x+b上方的部分对应的x的取值范围即为所求. 【解答】解:∵一次函数y=﹣3x+b和y=kx+1的图象交点为P(3,4), ∴当x≥3时,kx+1≥﹣3x+b,
∴不等式kx+1≥﹣3x+b的解集为x≥3, 在数轴上表示为:故选B.
5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.
平均数 方差
甲 7.9 3.29
乙 7.9 0.49
丙 8.0 1.8
根据以上图表信息,参赛选手应选( )
A.甲 B.乙 C.丙 D.丁 【考点】W7:方差;W1:算术平均数.
【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8, 则丁的成绩的平均数为:丁的成绩的方差为:
×(8+8+9+7+8+8+9+7+8+8)=8,
×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8
﹣7)2+(8﹣8)2+(8﹣8)2]=0.4, ∵丁的成绩的方差最小, ∴丁的成绩最稳定,
...
共分享92篇相关文档