当前位置:首页 > 2020届中考模拟宁夏自治区中考数学模拟试卷(含参考答案)(word版)
.
【专题】作图题.
【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可; (2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可. 【解答】解:(1)△A1B1C1如图所示; (2)△A2B2C2如图所示.
【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.
200 300 150 200 150
长跑 √ × √ √ √
短跑 × √ √ × ×
跳绳 √ × √ √ ×
跳远 √ √ × × ×
(1)估计学生同时喜欢短跑和跳绳的概率;
(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;
(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 【考点】利用频率估计概率;列表法与树状图法. 【分析】(1)根据求概率的公式即可得到结论; (2)根据求概率的公式即可得到结论;
(3)根据求概率的公式求得各项概率进行比较即可得到结论. 【解答】解:(1)同时喜欢短跑和跳绳的概率=(2)同时喜欢三个项目的概率=
=
;
.
=;
.
(3)同时喜欢短跑的概率==∵
=,
,
=,同时喜欢跳绳的概率==,同时喜欢跳远的概率
∴同时喜欢跳绳的可能性大.
【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.
21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.
【考点】等边三角形的性质.
【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题. 【解答】解:∵△ABC是等边三角形, ∴∠B=∠ACB=60°, ∵DE∥AB, ∴∠EDC=∠B=60°, ∴△EDC是等边三角形, ∴DE=DC=2,
在RT△DEC中,∵∠DEC=90°,DE=2, ∴DF=2DE=4, ∴EF=
=
=2
.
【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.
22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元. (1)求每行驶1千米纯用电的费用;
.
.
(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米? 【考点】分式方程的应用;一元一次不等式的应用. 【专题】方程与不等式.
【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题. 【解答】解:(1)设每行驶1千米纯用电的费用为x元,
=
解得,x=0.26
经检验,x=0.26是原分式方程的解, 即每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米, 0.26y+(解得,y≥74,
即至少用电行驶74千米.
【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.
四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分) 23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC. (1)求证:AB=AC; (2)若AB=4,BC=2
,求CD的长.
﹣y)×(0.26+0.50)≤39
【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.
【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;
(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=由割线定理可证得结论. 【解答】(1)证明:∵ED=EC,
.
,
.
∴∠EDC=∠C, ∵∠EDC=∠B, ∴∠B=∠C, ∴AB=AC;
(2)解:连接AE, ∵AB为直径, ∴AE⊥BC, 由(1)知AB=AC, ∴BE=CE=BC=
,
∵CE?CB=CD?CA,AC=AB=4, ∴
?2
=4CD,
∴CD=.
【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2y=(x>0)的图象经过OA的中点C,交AB于点D. (1)求反比例函数的关系式; (2)连接CD,求四边形CDBO的面积.
,反比例函数
【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.
【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;
(2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO=S△AOB﹣S△ACD即可求得. 【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2
.
,
共分享92篇相关文档