当前位置:首页 > PID控制PWM调节直流电机速度
**学院毕业设计(论文)
方案二:采用专用的电机驱动芯片,例如L298N、L297N等电机驱动芯片,由于它内部已经考虑到了电路的抗干扰能力,安全、可靠行,所以我们在应用时只需考虑到芯片的硬件连接、驱动能力等问题就可以了,所以此种方案的电路设计简单、抗干扰能力强、可靠性好。设计者不需要对硬件电路设计考虑很多,可将重点放在算法实现和软件设计中,大大的提高了工作效率。
基于上述理论分析和实际情况,电机驱动模块选用方案二。
2.4 速度采集模块设计方案
本系统是一闭环控制系统,在调节过程中需要将设定与当前实际转速进行比较,速度采集模块就是为完成这样功能而设计的,其设计方案以下三种:
方案一:采用霍尔集成片。该器件内部由三片霍尔金属板组成。当磁铁正对金属板时,由于霍尔效应,金属板发生横向导通[5],因此可以在电机上安装磁片,而将霍尔集成片安装在固定轴上,通过对脉冲的计数进行电机速度的检测。
方案二:采用对射式光电传感器。其检测方式为:发射器和接受器相互对射安装,发射器的光直接对准接受器,当测物挡住光束时,传感器输出产生变化以指示被测物被检测到。通过脉冲计数,对速度进行测量。
方案三:采用测速发电机对直流电机转速进行测量。该方案的实现原理是将测速发电机固定在直流电机的轴上,当直流电机转动时,带动测速电机的轴一起转动,因此测速发电机会产生大小随直流电机转速大小变化的感应电动势,因此精度比较高,但由于该方案的安装比较复杂、成本也比较高,在本次设计没有采用此方案。
以上三种方案中,第三种方案不宜采用,第一种和第二种方案的测速原理基本相同都是将电机转速转换为电脉冲的频率进行测量,但考虑到市场中的霍尔元件比较难买,而且成本也比较高,所以综合考虑在设计中选用第二种方案进行设计。
2.5 显示模块设计方案
在电机转速控制系统中,系统需要对参数、工作方式以及电机当前运行状态的显示,因此在整个系统中必须设计一个显示模块,考虑有三种方案:
方案一:使用七段数码管(LED)显示。数码管具有亮度高、工作电压低、功耗小、易于集成、驱动简单、耐冲击且性能稳定等特点,并且它可采用BCD编码显示数字,编程容易,硬件电路调试简单。但由于在此次设计中需要设定的参数种类多,而且有些需要进行汉字和字符的显示,所以使用LED显示器不能完成设计任务,不宜采用。
13
**学院毕业设计(论文)
方案二:采用1602LCD液晶显示器,该显示器控制方法简单,功率低、硬件电路简单、可对字符进行显示,但考虑到1602LCD液晶显示器的屏幕小,不能显示汉字,因此对于需要显示大量参数的系统来说不宜采用。
方案三:采用128×64LCD液晶显示器,该显示器功率低,驱动方法和硬件连接电路较上面两种方案复杂,显示屏幕大、可对汉字和字符进行显示。
根据本次设计的设计要求,显示模块选用方案三。
2.6 键盘模块设计方案
在电机转速控制系统中,系统需要按键进行参数的输入、工作方式的设定以及电机起停的控制,因此键盘在整个系统中是不可缺少的一部分,考虑有二种方案:
方案一:采用独立式键盘,这种键盘硬件连接和软件实现简单,并且各按键相互独立,每个按键均有一端接地,另一端接到输入线上。按键的工作状态不会影响其它按键上的输入状态。但是由于独立式键盘每个按键需要占用一根输入口线,所以在按键数量较多时,I/O口浪费大,故此键盘只适用于按键较少或操作速度较高的场合。
方案二:采用行列式键盘,这种键盘的特点是行线、列线分别接输入线、输出线。按键设置在行、列线的交叉点上,利用这种矩阵结构只需m根行线和n根列线就可组成m?n个按键的键盘,因此矩阵式键盘适用于按键数量较多的场合。但此种键盘的软件结构较为复杂[6]。
根据上面两种方案的论述,由于本次设计的系统硬件连接比较复杂,对软件的运行速度要求不高,所以采用方案二矩阵式键盘进行设计。
2.7 电源模块设计方案
电源是任何系统能否运行的能量来源,无论那种电力系统电源模块都是不可或缺的,对于该模块考虑一下两种方案。
方案一:通过电阻分压的形式将整流后的电压分别降为控制芯片和电机运行所需的电压,此种方案原理和硬件电路连接都比较简单,但对能量的损耗大,在实际应用系统同一般不宜采用。
方案二:通过固定芯片对整流后的电压进行降压、稳压处理(如7812、7805等),此种方案可靠性、安全性高,对能源的利用率高,并且电路简单容易实现。
根据系统的具体要求,采用方案二作为系统的供电模块。 经过上述的分析与论证,系统各模块采用的方案如下:
(1)控制模块: 采用AT89S51单片机;
14
**学院毕业设计(论文)
(2)电机驱动模块:采用直流电机驱动芯片L298N实现; (3)速度采集模块:采用光电传感器;
(4)显示模块: 采用128×64LCD液晶显示模块; (5)键盘模块: 采用标准的4×4矩阵式键盘; (6)电源模块: 采用7805、7812芯片实现。
3 单元电路设计
3.1 硬件资源分配
本系统电路连接及硬件资源分配见图3.1所示。采用AT89S51单片机作为核心器件,转速检测模块作为电机转速测量装置,通过AT89S51的P3.3口将电脉冲信号送入单片机处理,L298作为直流电机的驱动模块,利用128×64LCD显示器和
4×4键盘作为人机接口。
图3.1 系统电路连接及硬件资源分配图
四输入与门L0~L34P1.0~P1.3P0.0~P0.7P1.4~P1.75128×64LCD显示模块4×4键盘H0~H34P2.0~P0.5AT89S51P2.6P3.2/INT0P3.3/INT1P2.7电机驱动模块电机转速检测3.2 电源电路设计
电源是整个系统的能量来源,它直接关系到系统能否运行。在本系统中直流电机需要12V电源,而单片机、显示模块等其它电路需要5V的电源,因此电路中选用
15
U41Vin+5V3+5vC1ND**学院毕业设计(论文)
7805和7812两种稳压芯片,其最大输出电流为1.5A,能够满足系统的要求,其电
路如图3.2所示。
图3.2 电源电路
3.3 电机驱动电路设计
驱动模块是控制器与执行器之间的桥梁,在本系统中单片机的I/O口不能直接驱动电机,只有引入电机驱动模块才能保证电机按照控制要求运行,在这里选用
L298N电机驱动芯片驱动电机,该芯片是由四个大功率晶体管组成的H桥电路构成,
四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,通过调整输入脉冲的占空比,调整电动机转速。其中输出脚(SENSEA和SENSEB)用来连接电流检测电阻,Vss接逻辑控制的电源。Vs为电机驱动电源。IN1-IN4输入引脚为标准TTL 逻辑电平信号,用来控制H桥的开与关即实现电机的正反转,
ENA、ENB引脚则为使能控制端,用来输入PWM信号实现电机调速。其电路如
图3.3所示,利用两个光电耦合器将单片机的I/O与驱动电路进行隔离,保证电路安全可靠。这样单片机产生的PWM脉冲控制L298N的选通端[7],使电机在PWM脉冲的控制下正常运行,其中四个二极管对芯片起保护作用。 +12V+5VC920μFC1020μF94D2D3MG1U5VccVs1EN1A11A2470657R25KA1R5R1470P2.7 D1P2.6231Y11Y22EN2A12A2111012R4SEN1GNDSEN216 L298N1155KA2P2.5R3470+12V13142Y12Y2D48
共分享92篇相关文档