云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 多传感器数据融合

多传感器数据融合

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 15:34:06

的神经元节点,与该规则节点相应的连接权值为1,反之为0。该层节点的传递函数为模糊“与”:

S?{u,u,...,u}?{o?w1j,o?w2j,...,o?wqj}o?minS3j3j3j

323q313j31323q21222q

o?min{u,u,...,u} (7.3.3)

结论层:上层每个神经元只与表示相应结论的下层神经元连接,连接权值需要在训练过程中调整,初值可设为1,其他权值为0。传递函数为模糊“或”:

S??Wij4oi3

4ji?1q4o4?max{1,Sjj} (7.3.4)

输出层:该层节点仅和前一层表示该层变量的模糊区间的节点相连,连接权值为1。输

出节点完成去模糊化作用,输出精确量。传递函数为:

445444S5?(????u)?(????o?ijijj?ijiji) jii5544o?S/(??o)?jjiji (7.3.5)

i7.3.1.3网络的学习算法

该网络内部所有神经元都有明确的含义,在训练过程中只需调整第三四层间的权值,及输入、输出隶属函数的中心和宽度。学习算法采用BP(误差反向传播)算法。

55 分别用tk和ok表示输出层的第k个期望输出和实际输出,则单个样本的输出误差(均

方误差)为:

1N55e???(t?o?pkk)

2k?1假设有P个训练样本,则网络总误差为:

2 (7.3.6)

E??e???pp?1P (7.3.7)

网络训练的目标就是使网络总误差E小于一个预先设定的误差限?。

(1)对输出隶属函数中心?jk及宽度?jk的调整

44 45

结论层和输出层节点的连接关系示意图如图7.3.3。 ?4 jk?4jk

图7.3.3 结论层和输出层节点的连接关系示意图jk a.对输出隶属函数中心?4结论层节点jk的调整:?jk, ? 输出层节点

?4???4???4jkjkjk ??4jk????e??4 jk式中 ?为学习率,下同。

?e5??4??e?ok55?o5k5??4??(tk?ok)?4 jk?ok?jk??jkk??Fkout?o5?44o4jk?jkj4kj?(k?1)?Fkout?1??4????4()??jko4jjkjkk??Fkoutk?F?44koutjkojjj?(k?1)?Fkout?1j?(k???4jko41)?Fkout?1因此

4??45jkokjk??(tk?o5k)??5k??Fkout

?45jkok j?(k?1)?Fkout?1b.对输出隶属函数中心?4jk的调整:

4 ?jk???4jk???4jk 46

(7.3.8)(7.3.9)7.3.10)7.3.11)(7.3.12)7.3.13)

搜索更多关于: 多传感器数据融合 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

的神经元节点,与该规则节点相应的连接权值为1,反之为0。该层节点的传递函数为模糊“与”: S?{u,u,...,u}?{o?w1j,o?w2j,...,o?wqj}o?minS3j3j3j 323q313j31323q21222q o?min{u,u,...,u} (7.3.3) 结论层:上层每个神经元只与表示相应结论的下层神经元连接,连接权值需要在训练过程中调整,初值可设为1,其他权值为0。传递函数为模糊“或”: S??Wij4oi3 4ji?1q4o4?max{1,Sjj} (7.3.4) 输出层:该层节点仅和前一层表示该层变量的模糊区间的节点相连,连接权值为1。输出节点完成去模糊化作用,输出精确量。传递函数为: 445444S5?(??

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com