云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整word版)初三解直角三角形基本模型复习

(完整word版)初三解直角三角形基本模型复习

  • 62 次阅读
  • 3 次下载
  • 2025/6/25 11:28:24

课 题 教学目标 重 难 点 解直角三角形模型 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2. 学会解决常考的解直角三角形题型。 学会解决常考的解直角三角形题型 导 案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 学 案 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名 0° 30° 45° 60° 90° sinα cosα tanα cotα 0 1 0 无穷大 1 1 0 无穷大 0 第 1 页 共 8 页

/

1.解直角三角形的定义: 在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在Rt△ABC中,∠C=90°,则: 222①三边关系:a+b= c ; ②两锐角关系:∠A+∠B= 90°; ③边与角关系:sin A=cos B= 22aba,cos A=sin B=,tan A=; ccb④平方关系:sinA?cosA?1 ⑥倒数关系:tan A?tan(90°—A)=1 ⑦弦切关系:tan A=sinA cosA3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一 背靠背 例1.(2017?恩施州)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45) 第 2 页 共 8 页

/

例2(2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2) 巩固练习 1.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(结果保留整数) ≈1.7, 2.(2017?大连)如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为 n mile.(结果取整数,参考数据:≈1.7,≈1.4) 第 3 页 共 8 页

/

类型二 母抱子 例1.(2017?邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是 km. 例2.(2017?广安)如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米 (1)求甲、乙两建筑物之间的距离AD. (2)求乙建筑物的高CD. 巩固练习 1.(2017?潍坊)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼层底为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73) 第 4 页 共 8 页

/

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

课 题 教学目标 重 难 点 解直角三角形模型 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2. 学会解决常考的解直角三角形题型。 学会解决常考的解直角三角形题型 导 案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 学 案 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名 0° 30° 45° 60° 90° sinα cosα tanα cotα 0

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com