µ±Ç°Î»ÖãºÊ×Ò³ > ÓÅ»¯Éè¼Æ-2
º¯Êý×ó¶ËÊä³ö±äÁ¿ [x]=linprog()
[x,fval]= linprog()
[x,fval,exitflag]= linprog()
[x,fval,exitflag,output]= linprog()
[x,fval,exitflag,output,lambda]= linprog()
X·µ»ØÄ¿±êº¯Êý×îÓŽâ,fval·µ»ØÄ¿±êº¯Êý×îÓÅÖµ,exitflagÖÕÖ¹µü´úµÄ±êÖ¾£¨ÕûÊýÖµ£©,outputÊä³öµü´ú´ÎÊý,lambda½âxµÄÀ¸ñÀÊÈÕ³Ë×Ó exitflag=1 exitflag=0 exitflag=-2 exitflag=-3
output, algorithm output, funcCount output,iterations output,message
µÚ4Õ һάËÑË÷·½·¨
ÊÇÖ¸Çó½âһάĿ±êº¯Êýf(x)µÄ¼«Ð¡µãºÍ¼«Ð¡ÖµµÄÊýÖµµü´ú·½·¨£¬¿É¹éÄÉΪµ¥±äÁ¿º¯ÊýµÄ¼«Ð¡»¯ÎÊÌâ¡£ËäÈ»ÓÅ»¯Éè¼ÆÖд󲿷ÖÎÊÌâÊǶàάÎÊÌ⣬һάÎÊÌâµÄÇé¿ö½ÏÉÙ£¬µ«ÊÇһάÓÅ»¯·½·¨ÊÇÓÅ»¯·½·¨ÖÐ×î»ù±¾µÄ·½·¨£¬ÔÚÊýÖµµü´ú¹ý³ÌÖж¼Òª½øÐÐһάËÑË÷¡£ÁíÍ⣬ºÜ¶à¶àάÓÅ»¯ÎÊÌâ×îÖÕ¹é½áΪһάÓÅ»¯ÎÊÌâÀ´´¦Àí¡£
Èç¹ûÈ·¶¨Á˵ü´úµãx(k)¼°ÆäËÑË÷·½Ïòd(k)£¬ÄÇôµü´úËùµÃµÄеãx(k+1)½«È¡¾öÓÚ²½³¤a(k)£¬¼´
x(k+1)= x(k)+ a(k) d(k)£¬k=0£¬1£¬2£¬¡ (4.1)
ÓÉʽ4.1¿ÉÖª£¬²»Í¬µÄ²½³¤a(k)»áµÃµ½²»Í¬µÄµü´úµãºÍ²»Í¬µÄÄ¿±êº¯ÊýÖµf(x(k+1))¡£Ò»Î¬ÓÅ»¯ÎÊÌâµÄÄ¿µÄÊÇÔڼȶ¨µÄµü´úµãx(k)ºÍËÑË÷·½Ïòd(k)ÏÂѰÇó×îÓŲ½³¤a(k)£¬Ê¹µü´ú²úÉúµÄеãx(k+1)µÄº¯ÊýÖµ×îС£¬¼´
min f[x(k)+ a(k) d(k)]
ÔÚ³õʼµü´úµãx(k)ºÍËÑË÷·½Ïòd(k)È·¶¨ºó£¬¾Í°ÑÇó½â¶àάÓÅ»¯ÎÊÌâµÄ¼«Ð¡Öµ±ä³ÉÇó½âÒ»¸ö×Ô±äÁ¿¼´×îÓŲ½³¤aµÄ×îÓÅÖµµÄһάÎÊÌâÁË¡£¼´ÇóÒ»Ôªº¯Êý f(x(k+1))=f(x(k)+ a d(k))=¦Õ( a) (4.2) µÄ¼«ÖµÎÊÌâ¡£
һάËÑË÷µÄÓÅ»¯·½·¨ºÜ¶à£¬³£ÓýøÍË·¨¡¢»Æ½ð·Ö¸î·¨ºÍ¶þ´Î²åÖµ·¨¡£ һάËÑË÷·½·¨µÄ²½Ö裺
(1) È·¶¨³õʼËÑË÷Çø¼ä[a,b]£¬¼´×îÓŲ½³¤aËùÔÚµÄÇø¼ä[a,b]¡£ËÑË÷Çø¼äӦΪµ¥·åÇø¼ä£¬²¢ÇÒÔÚÇø¼äÄÚÄ¿±êº¯ÊýÓ¦Ö»ÓÐÒ»¸ö¼«Ð¡Öµ¡£
(2) ÔÚËÑË÷Çø¼ä[a,b]ÄÚѰÕÒ×îÓŲ½³¤a£¬Ê¹Ä¿±êº¯Êýʽ4.2´ïµ½¼«Ð¡Öµ¡£
4.1 È·¶¨³õʼµ¥·åÇø¼äµÄ·½·¨¡ª½øÍË·¨
ÔÀí
½øÍË·¨Ò²³ÆÎªÍâÍÆ·¨£¬ÊÇÒ»ÖÖͨ¹ý±È½Ïº¯ÊýÖµ´óСÀ´È·¶¨µ¥·åÇø¼äµÄ·½·¨¡£Óɵ¥·åº¯ÊýµÄÐÔÖÊ¿ÉÖª£¬ÔÚ¼«Ð¡µã×ó±ßº¯ÊýÖµÓ¦ÑϸñϽµ£¬¶øÔÚ¼«Ð¡µãÓұߺ¯ÊýÖµÓ¦ÑϸñÉÏÉý¡£Òò´Ë£¬´ÓijһÖÖ¸ø¶¨µÄ³õʼµãx0³ö·¢£¬ÒÔ³õʼ²½³¤aÑØ×ÅÄ¿±êº¯ÊýÖµµÄϽµ·½Ïò£¬Öð²½Ç°½ø£¨»òºóÍË£©£¬Ö±ÖÁÕÒµ½Ïà¼ÌµÄ3¸ö¼ÆËãµãµÄº¯ÊýÖµ³öÏÖ¡°´ó-С-´ó¡±µÄÇ÷ÊÆÎªÖ¹¡£ ÀûÓýøÍË·¨È·¶¨ËÑË÷Çø¼ä[a,b]µÄ²½ÖèÈçÏ£º (1) ÈÎÈ¡x0£¬²½³¤a>0£¬È¡x1=x0+a¡£ (2) ºóÍËÔËËã¡£¦Õ(x1)>¦Õ(x0)£¬ÔòÁîa=2a£¨²½³¤¼Ó±¶£©£¬x2=x0-a¡£·ÖÒÔÏÂÁ½ÖÖÇé¿ö£ºÈô¦Õ(x2)<¦Õ(x0)£¬ÔòÁîx1=x0£¬x0=x2¡£Öظ´(2)£»Èô¦Õ(x2)>¦Õ(x0)£¬ÔòÍ£Ö¹a=x2£¬b=x1¡£ (3) ǰ½øÔËË㣬Èô¦Õ(x1)<¦Õ(x0)£¬ÔòÁîa=2a£¨²½³¤¼Ó±¶£©£¬x2=x1+a¡£Èô¦Õ(x2)<¦Õ(x1)£¬ÔòÁîx0=x1£¬x1=x2£¬Öظ´(3)£»Èô¦Õ(x2)>¦Õ(x1)£¬ÔòÍ£Ö¹£¬a=x0£¬b=x2¡£ ³ÌÐò¿òͼ
4.2 »Æ½ð·Ö¸î·¨
1 »ù±¾ÔÀí
ÓÖ³ÆÎª0.618·¨£¬Ëüͨ¹ý²»¶ÏËõ¶ÌËÑË÷Çø¼äµÄ³¤¶ÈÀ´Ñ°Çóһάº¯Êýf(x)µÄ¼«Ð¡µã¡£¶ÔÓÚµ¥·åº¯Êýf(x)£¬ÔÚÆä¼«Öµ´æÔÚµÄij¸öÇø¼ä[a,b]ÄÚÈ¡Èô¸Éµã£¬¼ÆËãÕâЩµãµÄº¯ÊýÖµ²¢½øÐбȽϣ¬×Ü¿ÉÒÔÕÒµ½¼«Öµ´æÔڵĸüÐ¡Çø¼ä¡£ÔÚÕâ¸üÐ¡Çø¼äÄÚÔö¼Ó¼ÆËãµã£¬ÓÖ¿ÉÒÔ½²Çø¼ä½øÒ»²½ËõС¡£µ±
Çø¼ä×㹻С£¬¼´Âú×㾫¶ÈÒªÇóʱ£¬¾Í¿ÉÒÔÓøÃÇø¼äÄÚÈÎÒâÒ»µãµÄº¯ÊýÖµÀ´½üËÆ±í´ïº¯ÊýµÄ¼«Öµ¡£
Éèµ¥±äÁ¿º¯Êýf(x)ÔÚÇø¼ä[a,b]ÉÏÓж¨Ò壬Èô´æÔÚÒ»µãx*(a b)£¬Ê¹µÃf(x)ÔÚÇø¼ä[a,x*]ÉÏÑϸñµ¥µ÷¼õ£¬f(x)ÔÚÇø¼ä[x*,b]ÉÏÑϸñµ¥µ÷Ôö£¬Ôò³Æf(x)ÊÇÇø¼ä[a,b]Éϵģ¨Ï£©µ¥·åº¯Êý¡£ÏÔÈ»x*ÊÇf(x)ÔÚÇø¼ä[a,b]ÉϵÄΨһµÄ¼«Ð¡Öµµã¡£
¸ù¾Ý£¨Ï£©µ¥·åº¯ÊýËù¾ßÓеÄÐÔÖÊ£¬¶ÔÔÚÄ³Çø¼ä[a,b]Éϵģ¨Ï£©µ¥·åº¯Êýf(x)¿É²ÉÓûƽð·Ö¸î·¨ËÑË÷ÆäÔÚÇø¼ä[a,b]Äڵü«Ð¡Öµµã¡£ 2 ¼ÆËã·½·¨
ÉèÇø¼ä[a,b]µÄ³¤¶ÈΪL£¬ÔÚÇø¼äÄÚÈ¡µã¦Ë1£¬½«Çø¼ä·Ö¸îΪÁ½²¿·Ö£¬Ïß¶Îa¦Ë1µÄ³¤¶È¼Ç×÷¦Ë£¬²¢Âú×ã
?L?L????q2ÇÒ2??L??
?1?5£¬È¡Õý¸ù2ÓÉÉÏʽÓÐ??L??L?0£¬Á½±ßͬ³ýL2£¬µÃq2+q-1=0£¬ÔòÓÐq?q?5?1?0.6180339887¡£q³ÆÎªÇø¼äÊÕËõÂÊ£¬Ëü±íʾÿ´ÎËõСËùµÃµÄÐÂÇø¼ä³¤¶ÈÓëËõ2Ð¡Ç°Çø¼ä³¤¶ÈÖ®±È¡£
ÔÚһάËÑË÷ʱ£¬ÔÚÇø¼äÄÚÈ¡Á½¶Ô³Æµã¦Ë1ºÍ¦Ë2£¬²¢Âú×ã
q??2L??1L??2??0.618 ?2?2ÏÔÈ»£¬¾Ò»´Î·Ö¸îºó£¬Ëù±£ÁôµÄ¼«Öµ´æÔÚµÄÇø¼äҪôÊÇ[a, ¦Ë2]£¬ÒªÃ´ÊÇ[¦Ë1£¬b]¡£¶ø¾k´Î·Ö¸îºó£¬Ëù±£ÁôµÄÇø¼äµÄ³¤¶ÈΪ??qL?(0.618)L¡£
ÓÉÓÚÇø¼äÊÕËõÂÊqÊÇÒ»¸ö½üËÆÖµ£¬Ã¿´Î·Ö¸î±Ø¶¨´øÀ´Ò»¶¨µÄÉáÈëÎó²î£¬Òò´Ë£¬·Ö¸î´ÎÊýÌ«¶à
ʱ¼ÆËã»áÊ§Õæ¡£¾Ñé±íÃ÷£¬»Æ½ð·Ö¸îµÄ´ÎÊýkÓ¦ÏÞÖÆÔÚ11ÒÔÄÚ¡£
kkk4.3 À¸ñÀÊÈÕ²åÖµ¶àÏîʽ
ÊÇÒ»ÖÖÏÔʽ¹«Ê½,Ëü½«pn(x)±íʾΪһ×é²åÖµ»ùº¯ÊýµÄÏßÐÔ×éºÏ¡£ 1 ÏßÐÔ²åÖµ
É躯Êýy=f(x)ÔÚ¸ø¶¨µÄ»¥Òì½Úµãx0£¬x1Éϵĺ¯ÊýÖµ·Ö±ðΪy0=f(x0)£¬y1=f(x1)£¬ÈôÄܹ¹ÔìÒ»¸öº¯Êý
p1(x)=a+bx (4.3)
ʹËüÂú×ãp1(x0)=y0£¬p1(x1)=y1£¬Ôòʽ4.3ËùʾµÄ²åÖµÎÊÌâ³ÆÎªÏßÐÔ²åÖµ¡£
ÏßÐÔ²åÖµµÄ¼¸ºÎÒâÒåÊǹýÇúÏßy=f(x)ÉϵÄÁ½µã(x0,y0)ºÍ(x1,y1)×÷Ò»Ö±Ïߣ¬ÓÃp1(x)½üËÆÖµ´úf(x)¡£
¶ÔÓÚ¸ø¶¨µÄÁ½µã(x0,y0)ºÍ(x1,y1)£¬Ä³Ò»µãx(x0 p1(x)?y0?¼Ç y1?y0x?x1x?x0(x?x0)?y0?y1 x1?x0x0?x1x1?x0l0(x)?x?x1x?x0 ,l1(x)?x0?x1x1?x0l0 (x)ºÍ l1 (x)³ÆÎªÏßÐÔ²åÖµ»ùº¯Êý¡£ l0 (x)ºÍ l1 (x)ʵÖÊÉÏÊÇÂú×ãÌõ¼þ l0 (x0)=1, l0 (x1)=0; l1 (x0)=0, l1 (x1)=1µÄÒ»´Î²åÖµ¶àÏîʽ¡£ ÏßÐÔ²åÖµµÄ½â¿ÉÒÔ±íʾΪ²åÖµ»ùº¯Êýl0 (x)ºÍ l1 (x)µÄÏßÐÔ×éºÏ£¬Æä×éºÏϵÊýΪy0ºÍy1,¼´ p1(x)= y0 l0 (x)+ y1 l1 (x) 2 ¶þ´Îº¯Êý²åÖµ ÓÖ³ÆÎªÅ×ÎïÏß·¨£¬»ù±¾Ë¼Â·Îª£ºÀûÓÃÄ¿±êº¯ÊýÔÚÈô¸ÉµãµÄÐÅÏ¢ºÍº¯ÊýÖµ£¬¹¹ÔìÒ»¸öÓëÄ¿±êº¯ÊýÏà½Ó½üµÄµÍ´Î²åÖµ¶àÏîʽ£¬È»ºóÇó¸Ã¶àÏîʽµÄ×îÓŽâ×÷ΪԺ¯ÊýµÄ½üËÆ×îÓÅ½â¡£Ëæ×ÅÇø¼äµÄÖð´ÎËõС£¬¶àÏîʽ×îÓŵãÓëÔº¯Êý×îÓŵãÖ®¼äµÄ¾àÀëÖð½¥ËõС£¬Ö±µ½Âú×ãÒ»¶¨¾«¶ÈÒªÇóʱÖÕÖ¹µü´ú¡£ »ù±¾ÔÀí ÉèÄ¿±êº¯Êýf(x)ÔÚµãx1,x2,x3(x1< x2< x3)Éϵĺ¯ÊýÖµ·Ö±ðΪf1=f(x1),f2=(x2),f3=(x3),ÇÒÂú×ãf1> f2ºÍf2< f3¼´Âú×㺯ÊýÖµ³Ê¡°´ó-С-´ó¡±µÄÇ÷ÊÆ¡£ÓÚÊÇ¿Éͨ¹ýÔº¯ÊýÇúÏßÉϵÄ3¸öµãp1(x1,f1), p2(x2,f2), p3(x3,f3)×öÒ»Ìõ¶þ´ÎÇúÏߣ¬´Ë¶þ´Î²åÖµ¶àÏîʽΪp(x)=a+bx+cx2¡£ ΪÁËÇó½âp(x)µÄ¼«Ð¡Öµ£¬¶Ôp(x)Çóµ¼Êý£¬²¢ÁîÆäΪ0£¬¼´ p?(x)?b?2cx?0 ½âµÃ¶þ´Îº¯Êý¼«Ð¡µã xp??b (4.5) 2cΪÇóµÃ£¬Ó¦Çó³öʽ4.5ÖеĴý¶¨²ÎÊýbºÍc¡£ ¸ù¾Ý²åÖµÌõ¼þ£¬²åÖµº¯Êýp(x)ÓëÔº¯Êýf(x)ÔÚ²åÖµµãp1, p2, p3´¦º¯ÊýÖµÏàµÈ£¬µÃ p(x1)=a+bx1+cx12=f1 p(x2)=a+bx2+cx22=f2 p(x3)=a+bx3+cx32=f3 ÇóµÃ a?(x3?x2)x2x3f1?(x1?x3)x1x3f2?(x2?x1)x1x2f3(x1?x2)(x2?x3)(x3?x1) (4.6) 2222(x2?x3)f1?(x3?x12)f2?(x12?x2)f3b?(x1?x2)(x2?x3)(x3?x1)c?(x2?x3)f1?(x3?x1)f2?(x1?x2)f3(x1?x2)(x2?x3)(x3?x1)°Ñʽ4.6´úÈëʽ4.5£¬¼ÈµÃ¶þ´Î²åÖµº¯Êý¼«Ð¡µãµÄ¼ÆË㹫ʽ£º 22221?(x2?x3)f1?(x3?x12)f2?(x12?x2)f3?xp??? (4.7) 2?(x2?x3)f1?(x3?x1)f2?(x1?x2)f3?Ϊ±ãÓÚ¼ÆË㣬½«Ê½4.7¸ÄдΪ xp?0.5(x1?x3?C1) (4.8) C2
¹²·ÖÏí92ƪÏà¹ØÎĵµ