云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2012年重庆市高考数学试卷(理科)及详解

2012年重庆市高考数学试卷(理科)及详解

  • 62 次阅读
  • 3 次下载
  • 2025/6/28 23:57:46

(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论. 解答: 证明:(I)∵Sn+1=a2Sn+a1,① ∴Sn+2=a2Sn+1+a1,② ①﹣②可得:an+2=a2an+1 ∵a2≠0,∴ ∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1 ∵a2≠0,∴a1=1 ∴{an}是首项为1的等比数列; (II)当n=1或2时,等号成立 设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为

41

(n≥3) 即证(n≥2) a2=1时,等号成立 当﹣1<a2<1时,与同为负; 当a2>1时,与同为正; ∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1. 点评: 本题考查等比数列的证明,考查不等

42

式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.

43

参与本试卷答题和审题的老师有:lcb001;caoqz;xintrl;sllwyn;席泽林;qiss;庞会丽(排名不分先后) 菁优网

2012年9月25日

44

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论. 解答: 证明:(I)∵Sn+1=a2Sn+a1,① ∴Sn+2=a2Sn+1+a1,② ①﹣②可得:an+2=a2an+1 ∵a2≠0,∴ ∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1 ∵a2≠0,∴a1=1 ∴{an}是首项为1的等比数列; (II)当n=1或2时,等号成立 设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为 41 (n≥3) 即证(n≥2) a2=1时,等号成立 当﹣1<a2<1时,与同为负; 当a2>1时,与同为正; ∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1. 点评: 本题考查等比数列的证

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com