当前位置:首页 > (优辅资源)湖南省衡阳高三上学期第四次月考试题 数学(文) Word版含答案
精 品 文 档
因为a1?1也适合上式,因此,数列?an?的通项公式为an?n?1 2n?111n?1an(2)由(1)知,an?,故bn?(n?1)4? ?(n?1)42?24anan?1(n?1)(n?2)记数列?bn?的前项和为Tn,则Tn?2?22?3?23?记A?2?2?3?2?23?1111?(n?1)2n?1??[(?)??(?)] 23n?1n?211?(n?1)2n?1,B?(?)?23?(11?),则A?n2n?2,n?1n?2B?11nnn?2??故数列?bn?的前项和为Tn?n2? 2n?22(n?2)2(n?2)12x,g(x)?alnx(a?0). 222.(本小题满分12分)已知f(x)?(1)求函数F(x)?f(x)g(x)的极值;
(2)若函数G(x)?f(x)?g(x)?(a?1)x在区间(,e)内有两个零点,求的取值范围; (3)求证:当x?0时,lnx?1e31??0. 4x2ex【答案】(1)F(x)?f(x)g(x)?12axlnx(x?0) 21?11''∴F(x)?axlnx?ax?ax(lnx?)由F(x)?0得x?e2,由F(x)?0,得
22'0?x?e∴F(x)在(0,e]上单调递减,在[e,??)上单调递增,
∴F(x)min?F(e)???12?12?12?12a,F(x)无极大值. 4e(2)G(x)?又a?0,12a(x?a)(x?1)x?alnx?(a?1)x∴G'(x)?x??a?1? 2xx11?x?e,易得G(x)在(,1]上单调递减,在[1,e)上单调递增,
ee1要使函数G(x)在(,e)内有两个零点,
e试 卷
精 品 文 档
2e?1??1a?1a???a?0?1??2e22e2?2ee?G(e)?0???11??需?G(1)?0,即??a?1?0,∴?a?,
2?G(e)?0??2???e22e?e2??a???(a?1)e?a?02e?2??2∴
2e?112e?11,即的取值范围是?a?(,).
2e2?2e22e2?2e22x2312(3)问题等价于xlnx?x?由(1)知F(x)?xlnx的最小值为?
e42ex23x(x?2)令R(x)?x?(x?0)∴R'(x)?? xe4e易知R(x)在(0,2]上单调递增,[2,??)上单调递减∴R(x)max?R(2)?43? 2e4又?143314(3e?8)(e?2)?(2?)???2??0 2ee442ee4e2x2331?R(x)max,xlnx?x?故当x?0时,lnx?2?x?0成立.
e44xe2∴F(x)min
试 卷
共分享92篇相关文档