云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2014安顺中考数学试题(解析版)

2014安顺中考数学试题(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/25 14:53:33

(1)求出直线AC的函数解析式;

(2)求过点A,C,D的抛物线的函数解析式; (3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.

考点: 二次函数综合题. 分析: (1)先在Rt△ABO中,运用勾股定理求出OB=

=

2

=2,得出B(﹣2,0),再根据等腰梯形的对称性可

得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式; (2)设所求抛物线的解析式为y=ax+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式;

(3)先由点P(m,n)(n<0)在抛物线y=﹣x+x+2上,得出m<﹣2或m>4,n=﹣m+m+2<0,于是PM=m﹣m﹣2.由于∠PMC=∠AOC=90°,所以当Rt△PCM与Rt△AOC相似时,有

=

=或

=

=2.再分两种情况进行讨论:①若m<﹣2,则MC=4﹣m.由

2

2

2

==,列出方程=,解方程求出m的值,得到点P的坐标为(﹣4,﹣

4);由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(﹣

10,﹣28);②若m>4,则MC=m﹣4.由==时,列出方程=,解方

程求出m的值均不合题意舍去;由==2,列出方程=2,解方程求出m

的值,得到点P的坐标为(6,﹣4). 解答: 解:(1)由A(0,2)知OA=2, 在Rt△ABO中,∵∠AOB=90°,AB=2, ∴OB=

=

=2,

∴B(﹣2,0).

根据等腰梯形的对称性可得C点坐标为(4,0). 设直线AC的函数解析式为y=kx+n, 则

,解得

∴直线AC的函数解析式为y=﹣x+2;

(2)设过点A,C,D的抛物线的函数解析式为y=ax+bx+c,

2

则,解得,

∴y=﹣x+x+2;

(3)∵点P(m,n)(n<0)在抛物线y=﹣x+x+2上, ∴m<﹣2或m>4,n=﹣m+m+2<0, ∴PM=m﹣m﹣2. ∵Rt△PCM与Rt△AOC相似, ∴=

=或

=

=2.

2

2

2

2

①若m<﹣2,则MC=4﹣m. 当

=

=时,

=,

解得m1=﹣4,m2=4(不合题意舍去), 此时点P的坐标为(﹣4,﹣4); 当

=

=2时,

=2,

解得m1=﹣10,m2=4(不合题意舍去), 此时点P的坐标为(﹣10,﹣28); ②若m>4,则MC=m﹣4. 当

=

=时,

=,

解得m1=4,m2=0,均不合题意舍去;

当==2时,=2,

解得m1=6,m2=4(不合题意舍去), 此时点P的坐标为(6,﹣4);

综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).

点评: 本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰梯形的性质,相似三角形的性质,难度适中.利用分类讨论、数形结合及方程思想是解题的关键.

搜索更多关于: 2014安顺中考数学试题(解析版) 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(1)求出直线AC的函数解析式; (2)求过点A,C,D的抛物线的函数解析式; (3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标. 考点: 二次函数综合题. 分析: (1)先在Rt△ABO中,运用勾股定理求出OB==2=2,得出B(﹣2,0),再根据等腰梯形的对称性可得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式; (2)设所求抛物线的解析式为y=ax+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式; (3)先由点P(m,n)(n<0)在抛物线y=﹣x+x+2上,得出m<﹣2或m>4,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com