当前位置:首页 > 2014届高考物理二轮复习专题讲义:力学解答题常考的5种题型
2014届高考物理二轮复习专题讲义:力学解答题常考的5种题型
力学解答题常考的5种题型
纵观近几年各省的高考试题,力学综合题多涉及以下五种题型,如果掌握了这五种题型的特点和解题技巧,解决力学综合题就会事半功倍、化难为易。
1.对于匀变速直线运动,主要考查其公式、规律和图像,灵活运用这些知识是解决该类问题的关键。
2.追及和相遇问题是运动学应用中的一类典型问题,除了匀变速直线运动规律的应用外,还涉及位移和时间等物理量之间的关系式的建立,这类问题对学生的分析综合能力和推理判断能力有相当高的要求,通过这类问题的练习,有利于提高分析解决问题的能力。,在近几年的高考中,加速度、瞬时速度、匀变速直线运动的规律与追及相遇问题出现的频率较高,特别是在交通运输、体育运动、现代科技等与现实生活和生产实际相联系的背景下,实际运动问题的建模、测量加速度和速度、判断是否相遇?相碰?、计算运动时间等问题考生应高度重视。
[例1] 某班同学在研究性学习中开展了一次有趣的体育游戏活动——“巧搬运”。有一直跑道AC,A处放有一箱子,B处放有一皮球(图中未画出),C处的右侧是一水池,已知AB长度为L1=45 m,BC长度为L2=20 m。如图1所示,某同学从起点A由静止出发,跑到B处将停放在此处的皮球抱住(抱球时对该同学运动的速度没有影响),在BC区域返回且不落入水池中,把皮球搬回放入A处的箱子里,计时结束,时间最短为优胜者。第一次,同学甲听到发令枪响后,反应0.30 s后起跑,然后以1.50 m/s2的加速度做匀加速直线运动,同学甲达到9.00 m/s的速度后,匀速跑到B处抱球,并立即以1.50 m/s2的加速度做匀减速直线运动。第二次,同学乙听到发令枪响后,仍然反应0.30 s后起跑,然后仍然以1.50 m/s2的加速度做匀加速直线运动,同学乙达到9.00 m/s的速度后,立即仍以1.50 m/s2的加速度做匀减速直线运动,减速至0后反向再做加速度为1.50 m/s2的匀加速直线运动,达到最大速度9.00 m/s后匀速冲向A点。求:
匀变速直线运动与追及相遇问题
图1
(1)同学甲是否会落入水池;
(2)同学乙抱住皮球时的速度是多少,同学乙完成游戏任务的时间是多少。 [解析] (1)同学甲从B处开始做匀减速运动,速度减为0的位移设为s,则 v2=2as
v292
则s== m=27 m
2a2×1.5s>L2,同学甲会落入水池。
(2)设同学乙在AB段做匀加速直线运动达到9.00 m/s的位移为s1,则 v2=2as1 所以s1=27 m
v9
加速的时间t1== s=6 s
a1.5
vB2-v2
同学乙立即仍以1.50 m/s的加速度做匀减速直线运动,减速到B的位移s2==-2a
2
L1-s1=18 m
则同学乙抱住皮球时的速度vB=v2-2as2=5.2 m/s v9
同学乙减速到0的时间t2== s=6 s
a1.5
反向加速的位移大小和时间与AB段中的加速完全相同,即s3=27 m,t3=6 s 2s1-s3
最后做匀速运动的时间t4=v=3 s 该同学完成游戏任务的时间是 t=t0+t1+t2+t3+t4=21.3 s
[答案] (1)会落入水池 (2)5.2 m/s 21.3 s
[例2] 如图2所示,水平面上放有质量均为m=1 kg的物块A和B,A、B与地面的动摩擦因数分别为μ1=0.4和μ2=0.1,相距l=0.75 m。现给物块A一初速度使之向B运动,与此同时给物块B一个F=3 N的水平向右的力,B由静止开始运动,经过一段时间A恰好追上B且二者速度相等。g取10 m/s2,求:
图2
(1)物块A的初速度大小;
(2)从开始到物块A追上物块B的过程中,力F对物块B所做的功。
[解析] (1)设A经时间t追上B,A、B的加速度大小分别为a1、a2,由牛顿第二定律有: μ1mg=ma1 a1=4 m/s2, F-μ2mg=ma2 a2=2 m/s2,
恰好追上时它们速度相同,则:v0-a1t=a2t 11
追上时由路程关系有:v0t-a1t2=a2t2+l
22由以上四式解得A的初速度大小为: v0=3 m/s,t=0.5 s (2)B运动的位移: 1
s=a2t2=0.25 m 2
F对物块B所做的功:W=Fs=0.75 J [答案] (1)3 m/s (2)0.75 J
1.分析多过程运动问题应注意以下两点
(1)要养成根据题意画出物体运动示意图的习惯。特别对较复杂的运动,画出草图可使运动过程变得直观,物理图景清晰,便于分析研究,可以达到事半功倍的效果。
(2)要注意分析研究对象的运动过程,搞清整个运动过程按运动性质可分为哪几个运动阶段,各个阶段遵循什么规律,各个阶段间存在什么联系。列方程要注意公式中各个物理量的正负号。
2.追及相遇问题的解题技巧 抓住一 个条件 两物体的速度满足的临界条件为速度相等,这是两物体相距最远、最近,恰好追上、追不上的临界条件。 ①相遇位置与两物体的初始位置之间存在一定的位移关系。若同地出发,相遇明确两 个关系 时位移相等为空间条件。 ②相遇物体的运动时间也存在一定的关系。若两物体同时出发,运动时间相等;若甲比乙早出发Δt,则运动时间关系为t甲=t乙+Δt。要使两物体相遇就必须同时满足位移关系和运动时间关系。
多物体与多过程的运动问题 多物体、多过程的运动问题,主要考查牛顿运动定律在多个物体参与运动或者某一物体参与多个运动过程中的应用。“牛顿运动定律”是高中物理的核心内容之一,是动力学的“基石”。多物体运动问题的难点在于受力分析,涉及隔离法与整体法的应用;多过程的运动问题往往按照时间先后顺序依次对物体进行受力分析和运动分析,注意抓住前后两过程的联系点?前一过程的末态是后一过程的初态?,可以运用图像法处理力与运动的关系问题。
在近几年的高考中,牛顿运动定律往往和运动学规律结合起来考查。从能力角度来看,重点考查思维能力、分析和解决实际问题的能力。也经常渗透电场和磁场的知识,考查的综合性强,能力要求较高。
[例1] 如图3甲所示,水平光滑的桌面上静止放置一条长为l=1.6 m的纸带,纸带上正中间位置放置一个质量为m=1.0 kg的小铁块,纸带的左边恰好在桌面的左边缘,小铁块与纸带间的动摩擦因数为μ=0.1。现让纸带从t=0时刻开始一直保持v=1 m/s的速度向左匀速运动。已知桌面高度为H=0.8 m,g=10 m/s2,小铁块在运动过程中不翻滚,不计空气阻力。求:
图3
(1)小铁块从开始运动到桌面边缘过程所经历的时间,并在乙图中画出此过程中小铁块的v-t图像;
(2)小铁块抛出后落地点到抛出点的水平距离; (3)小铁块从开始运动到桌边相对纸带的位移。
[解析] (1)小铁块开始做匀加速运动,由牛顿第二定律μmg=ma,解得:a=1 m/s2 v
速度达到1 m/s所用的时间t1==1 s
a1
小铁块做匀加速运动的位移为s1=at12
2
1
解得:s1=0.5 m 2
共分享92篇相关文档