当前位置:首页 > 2020届高考数学(理)二轮复习专题强化训练:(十)数列理+Word版含答案
二、填空题
13.[2019·合肥质检二]设等差数列{an}的前n项和为Sn,若a2=3,S4=16,则数列{an}的公差d=________.
??a2=3,
解析:通解:由?
?S4=16,???a1=1,
解得?
?d=2.?
??a1+d=3,
得?
?4a1+6d=16,?
优解:由a2=3,S4=16,得(3-d)+3+(3+d)+(3+2d)=16,解得d=2. 答案:2
14.[2019·郑州质量预测二]已知等比数列{an}为单调递增数列,设其前n项和为Sn,若a2=2,S3=7,则a5的值为________.
22
解析:设{an}的公比为q,因为a2=2,S3=7,所以+2+2q=7,即2q-5q+2=0,
q14
解得q=2或q=(舍去),故a1=1,所以a5=2=16.
2
答案:16
15.[2019·长沙一模]设等差数列{an}的前n项和为Sn,且S13=52,则a4+a8+a9=________.
13×12
解析:解法一:设等差数列{an}的公差为d.由S13=52,得13a1+d=52,所以a1
2+6d=4,所以a4+a8+a9=(a1+3d)+(a1+7d)+(a1+8d)=3(a1+6d)=12.
解法二:设等差数列{an}的公差为d. 13?a1+a13?
由S13==13a7=52,得a7=4,
2
则a4+a8+a9=(a1+3d)+(a1+7d)+(a1+8d)=3(a1+6d)=3a7=12. 答案:12
16.[2019·广州综合测试一]设Sn是等比数列{an}的前n项和,若S3=3,S6=27,则
a1=________.
解析:设公比为q(q≠1),则有
??
?a?1-q???S=1-q=27
6
1
6
a1?1-q3?S3==3
1-q
11a1?1-q?3
,解得=3得3=,即q=8,得q=2,代入
1+q91-q3
a1?1-8?
3
=3,所以a1=. 1-27
3答案: 7
17.[2019·洛阳联考二]已知数列{an}的前n项和为Sn,对任意n∈N,Sn=(-1)an+1
n+n-3,且(t-an-1)(t-an)<0恒成立,则实数t的取值范围是________. 2
13
解析:当n=1时,a1=S1=-a1++1-3,解得a1=-.当n≥2时,an=Sn-Sn-1=
24111nn-1nn-1
(-1)an+n+n-3-(-1)an-1-n-1-(n-1)+3=(-1)an-(-1)an-1-n+1.若n2221
为偶数,则an-1=n-1,
2
∴an=
12
n+1
*
n1?1?1
-1(n为正奇数);若n为奇数,则an-1=-2an-n+1=-2?n+1-1?-n+1
2?2?2
1
=3-n-1,
2
11
∴an=3-n(n为正偶数).当n为正奇数时,数列{an}为递减数列,其最大值为a1=2
223111
-1=-,当n为正偶数时,数列{an}为递增数列,其最小值为a2=3-2=.若(t-an+
424
1
311
)(t-an)<0恒成立,则- 44 ?311?答案:?-,? ?44? 18.[2019·武昌调研]设{an}是公差不为零的等差数列,Sn为其前n项和,已知S1, S2,S4成等比数列,且a3=5,则数列{an}的通项公式为________. 解析:设数列{an}的公差为d(d≠0),因为{an}是等差数列,S1,S2,S4成等比数列,所以(a1+a2)=a1(a1+a2+a3+a4),因为a3=5,所以(5-2d+5-d)=(5-2d)(5-2d+15),解得d=2或d=0(舍去),所以5=a1+(3-1)×2,即a1=1,所以an=2n-1. 答案:an=2n-1 19.[2019·山西第一次联考]已知数列{an}的前n项和为Sn,则满足2Sn=n(an+3),a2 111 =5,若,,成等差数列,则l=________. 2 2 a1ala7 解析:由2Sn=n(an+3),得当n≥2时,2Sn-1=(n-1)(an-1+3),根据an=Sn-Sn-1,得2an=n(an+3)-(n-1)(an-1+3),得(n-2)an-(n-1)an-1=-3.当n≥3时, ann-1 - an-1-3anan-1?1-1?,所以a3-a2=3?1-1?,a4-a3= =,即-=3???2?32n-2?n-1??n-2?n-1n-221?n-1n-2??? anan-1?11?a5a4?11??1-1?,累加得,an-a2= 3?-?,-=3?-?,…,-=3??n-1n-2n-11?32?43?43??n-1n-2? 3? ?1-1?.又a=5,所以a=2n+1(n≥3),当n=1时,2a=a+3,得a=3,易知a?2n1111 ?n-1? 1111111* =3,a2=5也适合上式,所以an=2n+1(n∈N),于是=,=,=,又, a13al2l+1a715a11112 ,成等差数列,所以+=,l=2. ala73152l+1 答案:2 113 20.[2019·福建五校联考二]在数列{an}中,a1=,=,n∈N+,且bn= 3an+1an?an+3?1n+1 .记Pn=b1×b2×…×bn,Sn=b1+b2+…bn,则3Pn+Sn=________. 3+an解析:因为 1 1 an+1 =311111 =-,所以bn==-,所以Sn=b1+b2+… an?an+3?anan+33+ananan+1 ?11??11??11?=1-1.因为1=+bn=?-?+?-?+…+?-??a1a2??a2a3? ?anan+1?a1an+1 an+1 31 ,所以bn== an?an+3?3+anana1a2ana113a1n+1 ,所以Pn=b1×b2×…×bn=××…×=n.又a1=,故3Pn+Sn=3an+13a23a33an+13an+13an+1 111+-==3. a1an+1a1 答案:3
共分享92篇相关文档