当前位置:首页 > 2018届九年级数学上学期期末考试试题新人教版(5)
解得???k??2?3,
??b?4?23∴直线MN的函数表达式为y?(?2?3)x?4?23. ·········· 10分 26. 解:(1)∵BC⊥y轴,BA⊥x轴,∠AOB=90°,
∴四边形ABCO是矩形, ······················ 1分 ∵点B的坐标是(4,4),点E是BC中点, ∴BC=BA=4,
∴点E的坐标为(2,4),点F的横坐标为4, ············· 2分 ∴将点E的坐标代入y?kx得:4?k2, 解得:k?8,
即反比例函数的函数解析式为y?8x, ················ 3分 ∴点F的坐标为(4,2). ······················ 4分 (2)OE⊥CF. ···························· 5分 由(1)知四边形ABCO是正方形,CE=2, BF=2, ∴BC=OC,∠B=∠OCE=90°,BF=CE,
∴△BCF≌△COE, ························· 6分 ∴∠BCF=∠COE, ························· 7分 ∴∠COE+∠OCM=∠BCF+∠OCM=∠OCE=90°,
∴OE⊥CF. ···························· 8分 (3) 延长CF交x轴于点G,····················· 9分 ∵∠B=∠FAG=90°,FB=FA,∠BFC=∠AFG,
∴△BFC≌△AFG, ························· 10分 ∴BC=AG,
∴AG=AO, ···························· 11分 ∴MA是直角三角形OMG斜边上的中线, ∴AM=
12OG=AO. ·························· 12分 27. 解:(1)把A(0,1),代入y?13x2?bx?c
得c?1 ······························ 1分
13
将y?10代入y??x?1,得x??9,
∴B点坐标为(?9,10), ······················· 2分 1将B (?9,10),代入y?x2?bx?1
3得b?2 ····························· 3分 (2)△ABC是直角三角形 ······················ 4分 ∵y?13x2?2x?1?13(x?3)2?2
∴点C的坐标为(-3,-2) ·····················分别作BG垂直于y轴,CH垂直于y轴 ················∵BG?AG?9 , ∴?BAG?45° 同理?CAH?45° ∴?CAB?90°
∴△ABC是直角三角形 ······················· y B G E D F A O x C H 27题图
(3)∵BG?AG?9 , ∴AB?92,
5分 6分 7分 14
∵CH?AH?3,
∴AC?32, ·························· 8分 ∵四边形ADEF为平行四边形, ∴AD∥EF,
又∵点F为CD的中点,
∴CE?BE, ··························· 9分 即EF为△DBC的中位线, ∴EF?AD?12BD ∵AB?92,
∴EF?AD?32 ························· 10分 在Rt△ACD中,AD?32,AC?32,
∴CD?6 ···························· 11分 ∵CD?6, ∴AF?3
∴平行四边形ADEF周长为6+62. ·················· 12分
15
共分享92篇相关文档