云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高中数学竞赛题之平面几何

高中数学竞赛题之平面几何

  • 62 次阅读
  • 3 次下载
  • 2025/6/26 0:45:16

例6.正方形ABCD的中心为O,面积为1989㎝为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=__________

分析:答案是PB=42㎝.怎样得到的呢连接OA,OB.易知O,P,A,B

四点共圆,有∠APB=∠AOB=90°. 故PA2+PB2=AB2=1989.

由于PA:PB=5:14,可求PB. (5)其他

例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大

的和一个面积最小的,并求出这两个面积(须证明你的论断). (1978,全国高中联赛)

分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点

至少必落在正方形的三条边上,所以不妨令F,G两点在正方形的一组对边上. 作正△EFG的高EK,易知E,K,G,D四点共圆?∠KDE=∠KGE=60°.同理,∠KAE=60°.故△KAD也是一个正三角形,K必为一个定点.又正三角形面积取决于它的边长, 当KF丄AB时,边长为1,这时边长最小,而面积S=

3也最小. 4当KF通过B点时,边长为2·2?3,这时边长最大,面积S=23-3也最大. 例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N的任一点,PS交AB于R,PM的延长线交⊙O于Q.求证:RS>MQ.

分析:连接NP,NQ,NR,NR的延长线交⊙O于Q′.连接MQ′,SQ′.

易证N,M,R,P四点共圆,从而,∠SNQ′=∠MNR=∠MPR=∠SPQ=∠SNQ. 根据圆的轴对称性质可知Q与Q′关于NS成轴对称?MQ′=MQ. 又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′

是一条弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.

练习题

1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C点,射线O2A 交⊙O1 于D点.求证:点A是△BCD的内心.

(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2 四点共圆,从而知C,D,O1,B,O2五点共圆.)

2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.) 3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3

也是正三角形.

4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD. (提示:证B,Q,E,P和B,D,E,P分别共圆)

,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从

C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)

第五讲 三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N.

作点P关于MN的对称点P′.试证:P′点在△ABC外接圆上. (杭州大学《中学数学竞赛习题》)

分析:由已知可得MP′=MP=MB,NP′=NP =NC,故点M是△P′BP的外心,点N11是△P′PC的外心.有 ∠BP′P=∠BMP=∠BAC,

2211 ∠PP′C=∠PNC=∠BAC.

22 ∴∠BP′C=∠BP′P+∠P′PC=∠BAC.

从而,P′点与A,B,C共圆、即P′在△ABC外接圆上. 由于P′P平分∠BP′C,显然还有 P′B:P′C=BP:PC.

例2.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△

CSQ的外心为顶点的三角形与△ABC相似.

分析:设O1,O2,O3是△APS,△BQP,△CSQ的外心,作出六边形

O1PO2QO3S后再由外心性质可知

∠PO1S=2∠A, ∠QO2P=2∠B, ∠SO3Q=2∠C. ∴∠PO1S+∠QO2P+∠SO3Q=360°.从而又知∠O1PO2+

∠O2QO3+∠O3SO1=360°

将△O2QO3绕着O3点旋转到△KSO3,易判断△KSO1≌△O2PO1,

同时可得△O1O2O3≌△O1KO3.

111 ∴∠O2O1O3=∠KO1O3=∠O2O1K=(∠O2O1S+∠SO1K)=(∠O2O1S+∠PO1O2)

2221 =∠PO1S=∠A;

2 同理有∠O1O2O3=∠B.故△O1O2O3∽△ABC. 二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定

比2:1及中线长度公式,便于解题.

例3.AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△PAD,△PBE,

△PCF中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)

分析:设G为△ABC重心,直线PG与AB,BC相交.从A,C,D,E,F分别

作该直线的垂线,垂足为A′,C′,D′,E′,F′. 易证AA′=2DD′,CC′=2FF′,2EE′=AA′+CC′, ∴EE′=DD′+FF′.

有S△PGE=S△PGD+S△PGF.

两边各扩大3倍,有S△PBE=S△PAD+S△PCF.

例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成

的新三角形相似.其逆亦真.

分析:将△ABC简记为△,由三中线AD,BE,CF围成的三角形简记为△′.G为

重心,连DE到H,使EH=DE,连HC,HF,则△′就是△HCF. (1)a2,b2,c2成等差数列?△∽△′. 若△ABC为正三角形,易证△∽△′.

1 不妨设a≥b≥c,有 CF=2a2?2b2?c2,

21BE=2c2?2a2?b2,

21 AD=2b2?2c2?a2.

2 将a2+c2=2b2,分别代入以上三式,得 CF=

333a,b,c. BE=AD=222 ∴CF:BE:AD =

333a:b:c =a:b:c. 故有△∽△′. 222 (2)△∽△′?a2,b2,c2成等差数列.

当△中a≥b≥c时, △′中CF≥BE≥AD. ∵△∽△′, ∴

S?'CF2

=(). S?a 据“三角形的三条中线围成的新三角形面积等于原三角形面积的

S?'3=. S?43”,有4CF23 ∴2=?3a2=4CF2=2a2+b2-c2?a2+c2=2b2.

4a三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.

例5.设A1A2A3A4为⊙O内接四边形,H1,H2,H3,H4依次为

△A2A3A4,△A3A4A1,△A4A1A2,△A1A2A3的垂心.求证:H1,H2,H3,H4四点共圆,并确定出该圆的圆心位置.

分析:连接A2H1,A1H2,H1H2,记圆半径为R.由△A2A3A4知

A2H1=2R?A2H1=2Rcos∠A3A2A4;

sin?A2A3H1 由△A1A3A4得 A1H2=2Rcos∠A3A1A4.

但∠A3A2A4=∠A3A1A4,故A2H1=A1H2. 易证A2H1∥A1A2,于是,A2H1 A1H2,

故得H1H2 A2A1.设H1A1与H2A2的交点为M,故H1H2与A1A2关于M点成中心对

称.

同理,H2H3与A2A3,H3H4与A3A4,H4H1与A4A1都关于M点成中心对称.故四边

形H1H2H3H4与四边形A1A2A3A4关于M点成中心对称,两者是全等四边形,H1,H2,H3,H4在同一个圆上.后者的圆心设为Q,Q与O也关于M成中心对称.由O,M两点,Q点就不难确定了.

例6.H为△ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的

⊙H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2. 求证:AA1=AA2=BB1=BB2=CC1=CC2.

分析:只须证明AA1=BB1=CC1即可.设BC=a, CA=b,AB=c,△ABC外

接圆半径为R,⊙H的半径为r. 连HA1,AH交EF于M. AA12=AM2+A1M2=AM2+r2-MH2 =r2+(AM2-MH2), ①

11AH1)2-(AH-AH1)2 222

=AH·AH1-AH=AH2·AB-AH2

2

=cosA·bc-AH, ②

AH 而=2R?AH2=4R2cos2A,

sin?ABHa=2R?a2=4R2sin2A. sinA∴AH2+a2=4R2,AH2=4R2-a2. ③ 又AM2-HM2=(

b2?c2?a21由①、②、③有 AA=r+·bc-(4R2-a2)=(a2+b2+c2)-4R2+r2.

2bc2212

同理,BB12=

11(a2+b2+c2)-4R2+r2,CC12=(a2+b2+c2)-4R2+r2.故有22AA1=BB1=CC1.

四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I为△ABC的内心,射线AI交△ABC外接圆于A′,则有A ′I=A′B=A′C.换言之,点A′必是△IBC之外心(内心的等量关系之逆同样有用). 例7.ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,

△CDA的内心O1, O2,O3, O4.求证:O1O2O3O4为矩形.

例8.已知⊙O内接△ABC,⊙Q切AB,AC于E,F且与⊙O内切.试证:EF中点P是△ABC之内心.

分析:在第20届IMO中,美国提供的一道题实际上是例8的一种特例,但它增

搜索更多关于: 高中数学竞赛题之平面几何 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

例6.正方形ABCD的中心为O,面积为1989㎝为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=__________ 分析:答案是PB=42㎝.怎样得到的呢连接OA,OB.易知O,P,A,B 四点共圆,有∠APB=∠AOB=90°. 故PA2+PB2=AB2=1989. 由于PA:PB=5:14,可求PB. (5)其他 例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断). (1978,全国高中联赛) 分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F,G两点在正方形的一组对边上. 作正△EFG的高EK,易知E,K,G,D四点共圆?

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com