当前位置:首页 > 高二数学排列组合及二项式定理检测题
11.?2110 12.?2 13.-2 14.34 15.(?2,2) 216.解:(1)10 (2)405
295245 2x34n?5或n?0(舍) 17.解:依题意,得A2n?2An?1,得
当n?5时,x?720,y?360
(3)405x,?61236,218.证明:要使原不等式成立,只要证n?(而(2?1)n n21222?1)n?1?Cn?Cn???1?2n?(n?1)???n?2n???n nnn?原不等式成立
119.解:(1)a?
4aa9(2)依题意,得x?0,而要(?x)?27,只要?x?33
xx11axxa3对于a?0,????3()?33
x2244?a?时满足题意。
920.解:??an?是首项为a1的等比数列
1?an?a1qn?1
012(1)a1C2?a2C2?a3C2?a1(1?q)2
同理后面的和分别为a1(1?q),a1(1?q) (2)a1(1?q)
n34a1(1?qn)(3)由Sn?,得
1?qa01223nnn?1所求式子?1Cn(1?q)?Cn(1?q)?Cn(1?q)???(?1)Cn(1?q)
1?q?a1?(1?q)n 1?q??
01nnnn001nnx(1?x)n?Cnx(1?x)n?1??Cnx(1?x)0?(1?x?x)n?1 ?g(x)?Cn21.解:(1)f(x)?1 ?f()?f()??f()?1
?g(x)?1(x?0,x?1)
kk(2)f(x)?x,?f()?(k?N)
nn000111nnx(1?x)n?Cnx(1?x)n?1??Cnx(1?x)0 ?g(x)?Cnnnrrr?1?Cn?Cn?1 n0n?112n?2n?1nng(x)?0?Cnx(1?x)?Cx(1?x)???Cx?1n?1n?1n ?0n?11n?2n?1n?1?xCn?Cn??Cn?x(1?x?x)n?1x?1(1?x)?1(1?x)?1x0又?0无意义
?g(x)?x(x?0,x?1)
??
共分享92篇相关文档