云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 第2讲初一相交线与平行线动点提高题压轴题-共13页

第2讲初一相交线与平行线动点提高题压轴题-共13页

  • 62 次阅读
  • 3 次下载
  • 2025/5/6 14:22:12

第2讲 相交线与平行线动点提高题

知识点:

1、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。 3、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

4、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

动点型问题是最近几年中考的一个热点题型,

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 典型例题

例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB和CD的位置关系,并说明理由. (2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案) (3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案) (4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.

解(1):AB∥CD.

理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°. ∵∠AEF=150°, ∴∠EFH=30°, 又∵EF⊥GF,

∴∠HFG=90°-30°=60°. 又∵∠DGF=60°, ∴∠HFG=∠DGF,

∴HF∥CD,

则AB∥CD;

(2)延长ED交BC于点F. ∵AB∥DE,

∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°, ∴∠C=∠CDE-∠CFE=147°-110°=37°, 故答案是:37°;

(3)延长DC交AB于点F,作△ACF的外角∠4. ∵CD∥BE, ∴∠DFB=∠3,

又∵∠DFB+∠2+∠4=360°,

∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.

∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°, 故答案是:180°;

(4)延长BE交直线CD于点G. ∵AB∥CD,

∴∠ABE=∠BGD, 又∵∠ABE=∠DCF, ∴∠BGF=∠DCF, ∴BE∥CF.

例2.平面内的两条直线有相交和平行两种位置关系.

(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B-∠D;

(2)将点P移到AB、CD内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;

(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3BPD、∠B、∠D、∠BQD之间有何数量关系并证明你的结论;

(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______. 解(1)∵AB∥CD,

则∠

∴∠B=∠BOD,

而∠BOD=∠BPD+∠D, ∴∠B=∠BPD+∠D, 即∠BPD=∠B-∠D;

(2)(1)中的结论不成立,∠BPD=∠B+∠D. 作PQ∥AB,如图2, ∵AB∥CD, ∴AB∥PQ∥CD,

∴∠1=∠B,∠2=∠D, ∴∠BPD=∠B+∠D;

(3)∠BPD=∠B+∠D+∠BQD.理由如下: 连结QP并延长到E,如图3,

∵∠1=∠B+∠BQP,∠2=∠D+∠DQP, ∴∠1+∠2=∠B+∠BQP+∠D+∠DQP, ∴∠BPD=∠B+∠D+∠BQD; (4)连结AG,如图4, ∵∠B+∠F=∠BGA+∠FAG,

∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°, ∴n=6.

故答案为6.

例3.如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)? (3)当动点P落在第③部分时,全面探究∠PAC、∠APB、∠PBD之间的关系,并写出动点P的具体位置和相应的结论。选择其中一种结论加以证明。

③A ③A ③A C C C

P ② ① ② ① ② ①

B D B D B D ④ ④ ④

(第5题图) (1)解法一:如图9-1

延长BP交直线AC于点E ∵ AC∥BD , ∴ ∠PEA = ∠PBD . ∵ ∠APB = ∠PAE + ∠PEA , ∴ ∠APB = ∠PAC + ∠PBD . 解法二:如图9-2

过点P作FP∥AC , ∴ ∠PAC = ∠APF . ∵ AC∥BD , ∴FP∥BD . ∴ ∠FPB =∠PBD . ∴ ∠APB =∠APF +∠FPB =∠PAC + ∠PBD . 解法三:如图9-3,

∵ AC∥BD , ∴ ∠CAB +∠ABD = 180° 即 ∠PAC +∠PAB +∠PBA +∠PBD = 180°. 又∠APB +∠PBA +∠PAB = 180°, ∴ ∠APB =∠PAC +∠PBD . (2)不成立. (3)(a)当动点P在射线BA的右侧时,结论是 ∠PBD=∠PAC+∠APB .

(b)当动点P在射线BA上, 结论是∠PBD =∠PAC +∠APB . 或∠PAC =∠PBD +∠APB 或 ∠APB = 0°, ∠PAC =∠PBD(任写一个即可). (c) 当动点P在射线BA的左侧时,

结论是∠PAC =∠APB +∠PBD . 选择(a) 证明:

如图9-4,连接PA,连接PB交AC于M ∵ AC∥BD , ∴ ∠PMC =∠PBD . 又∵∠PMC =∠PAM +∠APM , ∴ ∠PBD =∠PAC +∠APB . 选择(b) 证明:如图9-5

∵ 点P在射线BA上,∴∠APB = 0°. ∵ AC∥BD , ∴∠PBD =∠PAC . ∴ ∠PBD =∠PAC +∠APB 或∠PAC =∠PBD+∠APB

或∠APB = 0°,∠PAC =∠PBD. 选择(c) 证明:

如图9-6,连接PA,连接PB交AC于F ∵ AC∥BD , ∴∠PFA =∠PBD . ∵ ∠PAC =∠APF +∠PFA , 考点训练 一.选择题

1.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( )

A.1 B.2 C.3 D.4

【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.

解:∵纸条的两边平行, ∴(1)∠1=∠2(同位角); (2)∠3=∠4(内错角);

(4)∠4+∠5=180°(同旁内角)均正确; 又∵直角三角板与纸条下线相交的角为90°, ∴(3)∠2+∠4=90°,正确. 故选:D.

2.如图,∠A0B的两边OA,OB均为平面反光镜,∠A0B=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是( )

A.60° B.80° C.100° D.120°

【分析】根据两直线平行,同位角相等、同旁内角互补以及平角的定义可计算即可. 解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°; ∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义), ∴∠PQR=180°﹣2∠AQR=100°, ∴∠QPB=180°﹣100°=80°. 故选:B.

3.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( )

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第2讲 相交线与平行线动点提高题 知识点: 1、平行线的判定: ①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。 2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。 3、平行线的性质: ①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。 4、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 动点型问题是最近几年中考的一个热点题型, 所谓“动点型问

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com