µ±Ç°Î»ÖãºÊ×Ò³ > ¶Ô³ÆÐÔÔÚ¸÷ÖÖ»ý·ÖÖе͍Àí
¶Ô³ÆÐÔÔÚ»ý·Ö¼ÆËãÖеÄÓ¦ÓÃ
¶¨Àí2.1.1[3] É躯Êýf(x,y)ÔÚxoyÆ½ÃæÉϵÄÓнçÇøÓòDÉÏÁ¬Ðø£¬ÇÒD¹ØÓÚ
(x,y)?D£¬¼´f(x,?y)??f(x,y)£¬ xÖá¶Ô³Æ.Èç¹ûº¯Êýf(x,y)ÊǹØÓÚyµÄÆæº¯Êý£¬
Ôò??f(x,y)d??0£»Èç¹ûf(x,y)ÊǹØÓÚyµÄżº¯Êý£¬¼´f(x,?y)?f(x,y)£¬
D(x,y)?D£¬Ôò??f(x,y)d??2??f(x,y)d?.
DD1ÆäÖÐD1ÊÇDÔÚxÖáÉÏ·½µÄÆ½ÃæÇøÓò.
ͬÀí¿Éд³ö»ý·ÖÇøÓò¹ØÓÚyÖá¶Ô³ÆµÄÇéÐÎ. ÔòÓɶ¨Àí2.1.1Öª??y3sin2xd??0.
DÓɶ¨Àí2.1.1¿ÉµÃÈçÏÂÍÆÂÛ.
ÍÆÂÛ2 É躯Êýf(x,y)ÔÚxoyÆ½ÃæÉϵÄÓнçÇøÓòDÉÏÁ¬Ðø£¬Èô»ý·ÖÇøÓòD¼È¹ØÓÚxÖá¶Ô³Æ£¬ÓÖ¹ØÓÚyÖá¶Ô³Æ£¬Ôò
¢Å Èôº¯Êýf(x,y)¹ØÓÚ±äÁ¿x,y¾ùΪżº¯Êý£¬Ôò??f(x,y)d??4??f(x,y)d?.
DD1ÆäÖÐD1ÊÇÇøÓòDÔÚµÚÒ»ÏóÏ޵IJ¿·Ö£¬D1??(x,y)?D|x?0,y?0?.
¢Æ Èôº¯Êýf(x,y)¹ØÓÚ±äÁ¿x»ò±äÁ¿yÎªÆæº¯Êý£¬Ôò??f(x,y)d??0.
D
µ±»ý·ÖÇøÓò¹ØÓÚÔµã¶Ô³ÆÊ±£¬ÎÒÃÇ¿ÉÒԵõ½ÈçÏµĶ¨Àí.
4¶¨Àí2.1.2?? É躯Êýf(x,y)ÔÚxoyÆ½ÃæÉϵÄÓнçÇøÓòDÉÏÁ¬Ðø£¬ÇÒD¹ØÓÚ
Ôµã¶Ô³Æ.Èç¹ûf(?x,?y)??f(x,y)£¬(x,y)?D£¬Ôò
????f(x,y)dDD20£»Èç¹û
f(?x,?y)?f(x,y)£¬(x,y)?D£¬Ôò??f(x,y)d??2??f(x,y)d??2??f(x,y)d?£¬
DD1ÆäÖÐD1??(x,y)?D|x?0?£¬D2??(x,y)?D|y?0?.
ΪÁËÐðÊöµÄ·½±ã£¬ÎÒÃǸø³öÇøÓò¹ØÓÚx,yµÄÂÖ»»¶Ô³ÆÐԵ͍Òå.
¶¨Òå2.1.1 ÉèDΪһÓнç¿É¶ÈÁ¿Æ½ÃæÇøÓò£¨»ò¹â»¬Æ½ÃæÇúÏ߶Σ©£¬Èç¹û¶ÔÓÚÈÎÒâ(x,y)?D£¬´æÔÚ(y,x)?D£¬Ôò³ÆÇøÓòD£¨»ò¹â»¬Æ½ÃæÇúÏ߶Σ©¹ØÓÚx,y¾ß
ÓÐÂÖ»»¶Ô³ÆÐÔ.
¹ØÓÚÇøÓòµÄÂÖ»»¶Ô³ÆÐÔ£¬ÓÐÈç϶¨Àí.
¶¨Àí2.1.3[5] É躯Êýf(x,y)ÔÚxoyÆ½ÃæÉϵÄÓнçÇøÓòDÉÏÁ¬Ðø£¬ÇÒD¹ØÓÚ
x,y¾ßÓÐÂÖ»»¶Ô³ÆÐÔ£¬Ôò??f(x,y)d????f(y,x)d?.
DD¶¨Àí2.2.1[6] É躯Êýf(x,y,z)ÊǶ¨ÒåÔÚ¿Õ¼äÓнçÇøÓò?ÉϵÄÁ¬Ðøº¯Êý£¬ÇÒ
?¹ØÓÚ×ø±êÆ½Ãæx?0¶Ô³Æ£¬Ôò
(1) Èôf(x,y,z)ÊǹØÓÚ±äÁ¿xµÄÆæº¯Êý£¬Ôò???f(x,y,z)dV?0£»
?(2) Èôf(x,y,z)ÊǹØÓÚ±äÁ¿xµÄżº¯Êý£¬Ôò
???f(x,y,z)dV?2???f(x,y,z)dV.
??1ÆäÖÐ?1ÊÇ?µÄǰ°ë²¿·Ö£¬?1??(x,y,z)??|x?0?.
ͬÀí¿Éд³ö?¹ØÓÚ×ø±êÆ½Ãæy?0£¨»òz?0£©¶Ô³ÆÊ±µÄÇéÐÎ.
Óë¶þÖØ»ý·ÖÀàËÆ£¬ÎÒÃÇÒ²¿ÉµÃµ½ÈçϽáÂÛ.
¶¨Àí2.2.2 É躯Êýf(x,y,z)ÊǶ¨ÒåÔÚ¿Õ¼äÓнçÇøÓò?ÉϵÄÁ¬Ðøº¯Êý£¬ÇÒ?¹ØÓÚÔµã¶Ô³Æ£¬Ôò
(1) Èôf(?x,?y,?z)??f(x,y,z)£¬(x,y,z)??£¬Ôò???f(x,y,z)dV?0£»
?(2) Èôf(?x,?y,?z)?f(x,y,z)£¬(x,y,z)??£¬Ôò
???f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV.
??1?2?3ÆäÖÐ?1??(x,y,z)??|x?0?£¬?2??(x,y,z)??|y?0?£¬?3??(x,y,z)??|z?0?
ΪÁË·½±ãÐðÊö£¬ÎÒÃÇÏȸø³öÒ»¸ö¿Õ¼ä¼¸ºÎÌ幨ÓÚx,y,zµÄÂÖ»»¶Ô³ÆÐÔ¶¨Òå. ¶¨Òå2.2.1[7] Éè?ÊÇÒ»Óнç¿É¶ÈÁ¿µÄ¼¯¼¸ºÎÌ壨?¿ÉΪ¿Õ¼äÇøÓò¡¢¿Õ¼äÇúÏß»òÇúÃæ¿é£©£¬ÇÒËüµÄ±ß½ç¹â»¬£¬Èô¶ÔÈÎÒâµÄ(x,y,z)??£¬¶¼´æÔÚ(y,z,x)??£¬´æÔÚ(z,x,y)??£¬Ôò³Æ?¹ØÓÚx,y,z¾ßÓÐÂÖ»»¶Ô³ÆÐÔ.
¹ØÓÚ¿Õ¼äÇøÓòµÄÂÖ»»¶Ô³ÆÐÔ£¬ÎÒÃÇÓÐÈçÏµĶ¨Àí.
¶¨Àí2.2.3 É躯Êýf(x,y,z)ÊǶ¨ÒåÔÚ¿Õ¼äÓнçÇøÓò?ÉϵÄÁ¬Ðøº¯Êý£¬ÇÒ?
¹ØÓÚx,y,z¾ßÓÐÂÖ»»¶Ô³ÆÐÔ£¬Ôò???f(x,y,z)dV????f(y,z,x)dV????f(z,x,y)dV.
???3.1 ¶Ô³ÆÐÔÔÚµÚÒ»ÐÍÇúÏß»ý·Ö¼ÆËãÖеÄÓ¦ÓÃ
±¾ÎÄÖ»ÌÖÂÛÆ½ÃæÇúÏߣ¬¶ÔÓÚ¿Õ¼äÇúÏßÓÐÀàËÆµÄ½áÂÛ.
¶¨Àí3.1.1[9] ÉèÆ½Ãæ·Ö¶Î¹â»¬ÇúÏßL¹ØÓÚyÖᣨ»òxÖᣩ¶Ô³Æ£¬ÇÒf(x,y)ÔÚ
LÉÏÓж¨Òå¡¢¿É»ý£¬Ôò
(1) Èôf(x,y)Ϊ¹ØÓÚx£¨»òy£©µÄÆæº¯Êý£¬Ôò?f(x,y)ds?0£»
L(2) Èôf(x,y)Ϊ¹ØÓÚx£¨»òy£©µÄżº¯Êý£¬Ôò?f(x,y)ds?2?f(x,y)ds.
LL1ÆäÖÐL1??(x,y)?L|x?0(»òy?0)?. Óɶ¨Àí3.1.1¿ÉµÃÈçÏÂÍÆÂÛ.
ÍÆÂÛ3 ÉèÆ½Ãæ·Ö¶Î¹â»¬ÇúÏßL¹ØÓÚxÖá¶Ô³ÆÇÒ¹ØÓÚyÖá¶Ô³Æ£¬ÇÒf(x,y)ÔÚ
LÉÏÓж¨Òå¡¢¿É»ý£¬Ôò
¢Å Èôf(x,y)¹ØÓÚx,y¾ùΪżº¯Êý£¬Ôò?f(x,y)ds?4?f(x,y)ds£¬
LL1ÆäÖÐL1??(x,y)?L|x?0,y?0?.
(2) Èôf(x,y)¹ØÓÚx»òyÎªÆæº¯Êý£¬¼´f(x,?y)??f(x,y)»ò
f(?x,y)??f(x,y)£¬(x,y)?L£¬Ôò?f(x,y)ds?0.
Lµ±ÇúÏßL¹ØÓÚÔµã¶Ô³ÆÊ±£¬ÎÒÃÇ¿ÉÒԵõ½ÈçÏµĶ¨Àí.
¶¨Àí3.1.2 ÉèÆ½Ãæ·Ö¶Î¹â»¬ÇúÏßL¹ØÓÚÔµã¶Ô³Æ£¬ÇÒf(x,y)ÔÚLÉÏÓж¨Òå¡¢¿É»ý£¬Ôò
(1) Èôf(?x,?y)??f(x,y)£¬(x,y)?L£¬Ôò?f(x,y)ds?0£»
L(2) Èôf(?x,?y)?f(x,y)£¬(x,y)?L£¬Ôò?f(x,y)ds?2?f(x,y)ds.
LL1ÆäÖÐL1ΪLµÄÉÏ°ëÆ½Ãæ»òÓÒ°ëÆ½Ãæ.
¹ØÓÚÇúÏßµÄÂÖ»»¶Ô³ÆÐÔ£¬ÎÒÃÇÓÐÈçϽáÂÛ.
¶¨Àí3.1.3 ÉèÆ½Ãæ·Ö¶Î¹â»¬ÇúÏßL¹ØÓÚx,y¾ßÓÐÂÖ»»¶Ô³ÆÐÔ£¬ÇÒf(x,y)ÔÚ
LÉÏÓж¨Òå¡¢¿É»ý£¬Ôò?Lf(x,y)ds??Lf(y,x)ds.
¶¨Àí3.2.1 ÉèLÎªÆ½ÃæÉϷֶι⻬µÄ¶¨ÏòÇúÏߣ¬P(x,y),Q(x,y)Ϊ¶¨ÒåÔÚLÉϵÄÁ¬Ðøº¯Êý£»
¢Å µ±L¹ØÓÚxÖá¶Ô³ÆÊ±£º
¢Ù ÈôP(x,y)ÊǹØÓÚyµÄżº¯Êý£¬Ôò?P(x,y)dx?0£»
L ÈôP(x,y)ÊǹØÓÚyµÄÆæº¯Êý£¬Ôò?P(x,y)dx?2?P(x,y)dx£¬
LL1 ¢Ú ÈôQ(x,y)ÊǹØÓÚyµÄÆæº¯Êý£¬Ôò?Q(x,y)dy?0£»
L ÈôQ(x,y)ÊǹØÓÚyµÄżº¯Êý£¬Ôò?LQ(x,y)dy?2?LQ(x,y)dy£»
1ÆäÖÐL1ÊÇLλÓÚxÖáÉÏ·½µÄ²¿·Ö.
¢Æ µ±L¹ØÓÚyÖá¶Ô³ÆÊ±£º
¢Ù ÈôP(x,y)ÊǹØÓÚxµÄÆæº¯Êý£¬Ôò?P(x,y)dx?0£»
L ÈôP(x,y)ÊǹØÓÚxµÄżº¯Êý£¬Ôò?P(x,y)dx?2?P(x,y)dx£»
LL1 ¢Ú ÈôQ(x,y)ÊǹØÓÚxµÄżº¯Êý£¬Ôò?Q(x,y)dy?0£»
L ÈôQ(x,y)ÊǹØÓÚxµÄÆæº¯Êý£¬Ôò?LQ(x,y)dy?2?LQ(x,y)dy£»
1ÆäÖÐL1ÊÇLλÓÚyÖáÓÒ·½µÄ²¿·Ö.
¢Ç µ±L¹ØÓÚÔµã¶Ô³ÆÊ±£º
¢Ù ÈôP(x,y),Q(x,y)¹ØÓÚ(x,y)Ϊżº¯Êý£¬¼´P(?x,?y)?P(x,y) ÇÒQ(?x,?y)?Q(x,y)£¬(x,y)?L£¬Ôò?P(x,y)dx?Q(x,y)dy?0£»
L¢Ú ÈôP(x,y),Q(x,y)¹ØÓÚ(x,y)ÎªÆæº¯Êý£¬¼´P(?x,?y)??P(x,y) ÇÒQ(?x,?y)??Q(x,y)£¬Ôò?LP(x,y)dx?Q(x,y)dy?2?LP(x,y)dx?Q(x,y)dy.
1ÆäÖÐL1Ϊ¶ÔÓÚÂÖ»»¶Ô³ÆÐÔ£¬ÎÒÃÇÓÐÈç϶¨Àí.
¶¨Àí3.2.2 ÉèLÎªÆ½ÃæÉϷֶι⻬µÄ¶¨ÏòÇúÏߣ¬P(x,y),Q(x,y)Ϊ¶¨ÒåÔÚLÉϵÄÁ¬Ðøº¯Êý.ÈôÇúÏßL¹ØÓÚx,y¾ßÓÐÂÖ»»¶Ô³ÆÐÔ£¬Ôò?P(x,y)dx??P(y,x)dy.
LLLµÄÓÒ°ëÆ½Ãæ»òÉÏ°ëÆ½Ãæ²¿·Ö.
¹²·ÖÏí92ƪÏà¹ØÎĵµ