云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > [导与练](新课标)2016高考数学二轮复习 仿真模拟卷(一)理

[导与练](新课标)2016高考数学二轮复习 仿真模拟卷(一)理

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 4:30:09

设g(x)=ln x+-+a,

则g′(x)=+-

=

=(x>0).

①当a≤0时,2ax-e<0,

所以,当x∈(0,e)时,g′(x)>0,g(x)单调递增; 当x∈(e,+∞)时,g′(x)<0,g(x)单调递减. 从而g(x)max=g(e)=0. 故g(x)≤0恒成立. ②当a>0时, g′(x)=

=(x-e)(-).

令-=,解得x1=,则当x>x1时,->;

再令(x-e)=1,解得x2=+e,则当x>x2时,

(x-e)>1.

取x0=max{x1,x2},

则当x>x0时,g′(x)>1.

所以,当x∈(x0,+∞)时,g(x)-g(x0)>x-x0, 即g(x)>x-x0+g(x0).

这与“g(x)≤0恒成立”矛盾. 综上所述a的取值范围为(-∞,0]. 22.证明:(1)连接BD,

13

因为AB为☉O的直径, 所以BD⊥AC, 又∠ABC=90°,

所以CB切☉O于点B, 又ED切☉O于点D,

因此EB=ED,所以∠EBD=∠EDB,

又因为∠CDE+∠EDB=90°=∠EBD+∠C, 所以∠CDE=∠C,

所以ED=EC,因此EB=EC, 即E是BC的中点.

(2)连接BF,显然BF是Rt△ABE斜边上的高, 可得△ABE∽△AFB, 于是有=, 即AB2

=AE2AF,

同理可得AB2

=AD2AC, 所以AD2AC=AE2AF. 23.解:(1)ρ=4

sin (θ+)=4sin θ+4cos θ,

所以ρ2=4ρsin θ+4ρcos θ,所以x2

+y2

-4x-4y=0,

即曲线C的直角坐标方程为(x-2)2+(y-2)2

=8; 直线l的普通方程为

x-y+2

-3=0.

(2)把直线l的参数方程代入到圆C:x2

+y2

-4x-4y=0, 得t2

-(4+5

)t+33=0,

设方程的两根为t1,t2,则t1t2=33. 因为点P(-2,-3)显然在直线l上, 由直线的参数方程下t的几何意义知 |PA||PB|=|t1t2|=33.

24.解:(1)当a=-2时,不等式f(x)

设y=|2x-1|+|2x-2|-x-3,

14

则y=

其图象如图所示.

结合图象可得,y<0时0-1,且当x∈[-,)时, f(x)=1+a,

不等式f(x)≤g(x)化为1+a≤x+3, 故x≥a-2对x∈[-,)都成立.

故-≥a-2,解得a≤,

故a的取值范围为(-1,].

15

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

设g(x)=ln x+-+a, 则g′(x)=+- = =(x>0). ①当a≤0时,2ax-e<0, 所以,当x∈(0,e)时,g′(x)>0,g(x)单调递增; 当x∈(e,+∞)时,g′(x)0时, g′(x)= =(x-e)(-). 令-=,解得x1=,则当x>x1时,->; 再令(x-e)=1,解得x2=+e,则当x>x2时, (x-e)>1. 取x0=max{x1,x2}, 则当x>x0时,g′(x)>1. 所以,当x∈(x0,+∞)时,g(x)-g(x0)>x-x0, 即g(x)>x-x0+g(x0

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com