当前位置:首页 > 河南省信阳市2019年中考数学一模试卷(Word版,含答案解析)
得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论. 【解答】解:(1)∵点P,N是BC,CD的中点, ∴PN∥BD,PN=BD, ∵点P,M是CD,DE的中点, ∴PM∥CE,PM=CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN,
故答案为:PM=PN,PM⊥PN;
(2)△PMN是等腰直角三角形. 由旋转知,∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE,
利用三角形的中位线得,PN=BD,PM=CE, ∴PM=PN,
∴△PMN是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC, ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,
∴△PMN是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形, ∴MN最大时,△PMN的面积最大, ∴DE∥BC且DE在顶点A上面, ∴MN最大=AM+AN, 连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°, ∴AM=2
,
,
在Rt△ABC中,AB=AC=10,AN=5∴MN最大=2
+5
=7
,
∴S△PMN最大=PM2=×MN2=×(7
)2=
.
方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD, ∴PM最大时,△PMN面积最大, ∴点D在BA的延长线上,
∴BD=AB+AD=14, ∴PM=7,
∴S△PMN最大=PM2=×72=
.
【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.
23.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标. 【解答】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:c=﹣3.
∴抛物线的解析式为y=x2﹣2x﹣3. ∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3. ∴点B的坐标为(﹣1,0). 故答案为:﹣2;﹣3;(﹣1,0). (2)存在. 理由:如图所示:
,解得:b=﹣2,
①当∠ACP1=90°.
由(1)可知点A的坐标为(3,0). 设AC的解析式为y=kx﹣3.
∵将点A的坐标代入得3k﹣3=0,解得k=1, ∴直线AC的解析式为y=x﹣3. ∴直线CP1的解析式为y=﹣x﹣3.
∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去), ∴点P1的坐标为(1,﹣4). ②当∠P2AC=90°时. 设AP2的解析式为y=﹣x+b.
∵将x=3,y=0代入得:﹣3+b=0,解得b=3. ∴直线AP2的解析式为y=﹣x+3.
∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去), ∴点P2的坐标为(﹣2,5).
综上所述,P的坐标是(1,﹣4)或(﹣2,5). (3)如图2所示:连接OD.
共分享92篇相关文档