当前位置:首页 > 2019-2020学年人教版数学五年级下册期末复习知识要点汇总-部编
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。 如:2/5和1/4 可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/10 0.03=3/100 0.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000…… 如:3/10=0.3 3/5=6/10=0.6 1/4=25/100=0.25
方法二:用分子÷分母 如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大; 分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。 1/2=0.5 1/4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6 4/5=0.8
1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。 ② 2和任何奇数都是互质数。 ③ 相邻的两个自然数是互质数。 ④ 相邻的两个奇数互质。 ⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
① 倍数关系:最大公因数就是较小数。 ② 互质关系:最大公因数就是1
③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
16、分数知识图解:
第五单元 分数的加减法
1、分数数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减) (2) 异分母分数加、减法 (通分后再加减) (3) 分数加减混合运算:同整数。 (4) 结果要是最简分数
2、带分数加减法:
带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
附:具体解释
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。 2、计算的结果,能约分的要约成最简分数。 (二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 (三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
第六单元 统计与数学广角
1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数: (1)按大小排列;
(2)如果数据的个数是单数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法: 总数÷总份数=平均数
4、一组数据的一般水平:
(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。 (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。 5、平均数、中位数和众数的联系与区别:
① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。
② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况。
③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况。
5、统计图:我们学过——条形统计图、复式折线统计图。 条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
注:① 画图时注意:
一“点”(描点)、 二“连”(连线)、三“标”(标数据)。 ②要用不同的线段分别连接两组数据中的数。
6、 打电话:
规律——人人不闲着,每人都在传。(技巧:已知人数依次 × 2) (1)逐个法:所需时间最多。 (2)分组法:相对节约时间。 (3)同时进行法:最节约时间。
共分享92篇相关文档