当前位置:首页 > (优辅资源)江苏省海安县高三上学期第一次学业质量测试数学试题Word版含答案
精 品 文 档
江苏省海安县2018届高三上学期第一次学业质量测试
数学试题
一、填空题:
1.已知集合A?{?1,0,3},B?{1,2,3},则A?B? .
2.设复数z满足i(z?i)??3?i,其中i为虚数单位,则z的模为 .
3. 已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为 .
4.某校高一年级共有800名学生,根据他们参加某项体育测试的成绩只做了如图所示的频率分布直方图,则成绩不低于80分的学生人数为 .
5.如图,是一个算法的流程图,则输出的b的值为 .
x2y26.在平面直角坐标系xOy中,已知双曲线2?2?1(a?0,b?0)的渐近线方程为
aby??3x,则该双曲线的离心率为 . 试 卷
精 品 文 档
7.已知正三棱锥的体积为363cm,高为4cm,则底面边长为 cm.
33??,??(0,),则sin(??)的值为 . 523a9.关于x的不等式x??b?0(a,b?R)的解集{x|3?x?4},则a?b的值为 . x8.已知cos??10.已知数列{an}是公差不为0的等差数列,其前n项和为Sn,若a1?a4?a7?0,则的值为 .
S6a5?2x,x?m11.已知函数f(x)??的值域为R,则实数m的取值范围是 .
?x?1,x?m12.在平面直角坐标系xOy中,分别过点M(2,2),N(1,1)的直线l1,l2满足:l1?l2,且l1,
l2被圆C:(x?4)2?y2?r2(r?0)截得的弦长相等,则直线l1的斜率的取值集合
为 .
13.在?ABC中,已知AB?2,tanB?3tanA,若?ABC的面积S?CA?CB,则S的值为 .
14.已知x?0,y?0,且x?y?1,则二、解答题
15.已知向量a?(cosx,sinx),b?(3,?3),x?[0,?]. (1)若a//b,求x的值;
(2)记f(x)?a?b,求f(x)的最大值和最小值以及对应的x的值.
16.如图,在直三棱柱ABC?A1B1C1中,点D,E分别在棱BC,B1C1上(均异于端点),且
18?的最小值为 . x2y2AD?C1D,A1`E?C1D.
(1)求证:平面ADC1?平面BCC1B1; (2)求证:A1E//平面ADC1.
试 卷
精 品 文 档
17.如图,已知AB是一幢6层的写字楼,每层高均为3m,在AB正前方36m处有一建筑物
CD,从楼顶A处测得建筑物CD的张角为450.
(1)求建筑物CD的高度;
(2)一摄影爱好者欲在写字楼AB的某层拍摄建筑物CD.已知从摄影位置看景物所成张角最大时,拍摄效果最佳.问:该摄影爱好者在第几层拍摄可取得最佳效果(不计人的高度)?
x2y218. 在平面直角坐标系xOy中,已知椭圆C:2?2?1(a?b?0)的左顶点为
abA(?5,0),离心率为
25. 5(1)求椭圆C的方程;
(2)如图,PQ是圆O:x?y?a的直径(点P在x轴上方),AP交椭圆C于点M,
222AQ?2,设?AMQ与?APQ的面积分别为S1,S2,求S1:S2.
试 卷
精 品 文 档
19.已知函数f(x)?(x?ax?a)e,其中a?R,e是自然对数的底数. (1)当a?1时,求曲线y?f(x)在x?0处的切线方程; (2)求函数f(x)的单调减区间;
(3)若f(x)?4在[?4,0]上恒成立,求a的取值范围.
*20.设数列{an}的前n项和为Sn,且Sn?2an?2,n?N.
2x(1)求证:数列{an}为等比数列; (2)设数列{an}的前n项和为Tn,求证:
2S2n为定值; Tnn(3)判断数列{3?an}中是否存在三项成等差数列,并证明你的结论.
21.【选做题】 A.
如图,四边形ABCD是圆的内接四边形,BC?BD,BA的延长线交CD的延长线于点E. 求证:AE平分?DAF.
B.
?x??x'??x?2y??1已知变换T:???????,试写出变换T对应的矩阵A,并求出其逆矩阵A. ??y??y'??y?
试 卷
共分享92篇相关文档