云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 考研数学基础串讲讲义

考研数学基础串讲讲义

  • 62 次阅读
  • 3 次下载
  • 2025/5/5 13:32:53

【th】若f’(x)=0至多一个根,则f(x)至多两个根。 【反证】设f(x)=0至少三个根,

?f(a)?f(b)?0?f'(?1)?0F(a)=f(b)=f(c)=0??

?f(b)?f(c)?0?f'(?2)?0

f’(?)=0至少两个根,与命题矛盾!证毕。 【th】若f’(x)=0至多两个根,则f(x)至多三个根。 【反证】设f(x)=0至少四个根,

f(a)=f(b)=f(c)=f(d)=0?f’(?1)=f’(?2)=f’(?3)=0 f’(?)至少三个根,与命题矛盾!证毕! 【th】若f’(x)=0至多k个根,则f(x)至多k+1个根。

☆☆罗尔原话: 若ff?n??n?1??x??0至多k个根

?x?至多k+1个根。

?罗尔定理(证明你要会)

?①在闭区间连续?设f(x)满足三条?②在开区间可导

?③f(a)?f(b)?则,f’(?)=0 ???(a,b) ?-中值

(光滑曲线两端点相等,必有极值点) ???(a,b),f’(?)=0

【例】证明lnx=e??实根 【分析】?=?x?01?cos2xdx有且有两个

?01?cos2xdx

?02sinxdx

=22

?0sinxdx=2

?3?4sinxdx=???2 424sinxdx=1- ?3?245?4sinxdx(2006)?=2-2

3?4常识!!!请记住!

故lnx=ex?22 (x>0) 即lnx-e?22=0 (0,+∞) 记f(x)= lnx-e+22 ① 存在性—“有”

xxf(1)= 22-e>0

xlim?f(x)?xli?m0?(lnx?ex?0?22)?0 xlim???f(x)?lim(lnx?exx????22)?0

x→∞,e?xx?ln?x (α,β

?由零点定理可知,

f(x)至少有两个零点;

γ>0),

搜索更多关于: 考研数学基础串讲讲义 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

【th】若f’(x)=0至多一个根,则f(x)至多两个根。 【反证】设f(x)=0至少三个根, ?f(a)?f(b)?0?f'(?1)?0F(a)=f(b)=f(c)=0?? ?f(b)?f(c)?0?f'(?2)?0 f’(?)=0至少两个根,与命题矛盾!证毕。 【th】若f’(x)=0至多两个根,则f(x)至多三个根。 【反证】设f(x)=0至少四个根, f(a)=f(b)=f(c)=f(d)=0?f’(?1)=f’(?2)=f’(?3)=0 f’(?)至少三个根,与命题矛盾!证毕! 【th】若f’(x)=0至多k个根,则f(x)至多k+1个根。 ☆☆罗尔原话: 若ff?n??n?1??x??0至多k个根 ?x?至多k+1个根。 ?罗尔定理(证明你要会) ?①在闭区间连

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com