当前位置:首页 > 河北省衡水中学2016届高三上学期四调考试理数试题
又?C?3,?为?C的中点,所以????C.
又因为?DI?C??,所以???平面??CD. (4分) (2)过点?作?z//??,所以?z?平面??CD.
如图,以?为原点,??,??,?z所在直线分别为x,y,z轴,建立空间直角坐标系.
??333?3?可得,?3,0,0,??0,1,0?,C?3,0,0,????2,0,2??,???4,0,4??.
????uuur?33uuur?53uuur3?3?所以????3,1,0,?????4,0,4??. ??2,0,2??,C???????uuur??3x?y?0r?n????0r??设n??x,y,z?是平面???的一个法向量,则?ruuu,即?333, rx?z?0????n????0?22r令x?1,则n?1,3,3.
r4ruuu设直线C?与平面???所成的角为?,可得sin??cosn,C??.
74所以直线C?与平面???所成角的正弦值为. (12分)
719、解:(1)Q?an?为等差数列,且a2?a7?a12??6,?3a7??6,即a7??2,
????????又Q公差d??1,?an?a7??n?7?d??2?n?7?5?n,n???.
n?a1?an?n?4?5?n?9nn2Sn????,n???. (3分)
2222(2)由(1)知数列?an?的前4项为4,3,2,1,
?等比数列?bn?的前3项为4,2,1, 1??bn?4?????2?n?11?,?anbn?4?5?n?????,
?2?n?11n?2n?1??1?0?1??1??1???Tn?4?4????3????L??6?n??????5?n?????,①
?2??2??2????2???2n?1n??1?11?1??1??1???Tn?4?4????3????L??6?n??????5?n?????,② 2?2??2??2????2???第9页/共14页
①?②得12T?????1?1?1?2?1?n?1???1?nn?4?4??????2?????2???L???2???????4?5?n??????2??
??1?n?12?1????16????2?????nn?1?4?5?n???1?1?1??2???12??2n?6????1??2??. 2n?1?T1?n?24??4n?12?????2??,n??? . (8分)
?T?1??1220?4n?Tn?1?4n?124?n2n?1?2n?2?n2n?1, ?T1?T2?T3?T4?T5,且T5?T6?L??n, ?n??*时,?T49n?max?T4?T5?2. 又QS9nn2n?2?2,
?n??*时,?Sn?max?S4?S5?10,
Q存在m??*,使得对任意n??*,总有Sn?Tm??成立.
??S49n?max??Tm?max??,?10?2??, ?实数?的取值范围为????292,?????. (12分) 20、解:(1)如图,作FG//??,?G//?F,连接?G交?F于?,连接??,Q?F//CD且
?F?CD,??G//CD,即点G在平面??CD内.
由???平面??CD,知????G,
?四边形??FG为正方形,四边形CD?G为平行四边形, (2分) ??为?G的中点,?为CG的中点, ???//C?.
Q???平面??F,C??平面??F, ?C?//平面??F. (4分)
第10页/共14页
?G,
(2)法一:如图,以?为原点,?G为x轴,?D为y轴,??为z轴,建立空间直角坐标系??xyz.
则
??0,0,0?,??0,0,1?,D?0,2,0?,
设??1,y0,0?,
?u?uDur??0,2,?1?,uDuu?ur??1,y0?2,0?,
设平面??D的一个法向量为nr??x,y,z?,则??ruuur?n?nr???uDuDu?ur?2y?z?0?x??y, ?0?2?y?0令y?1,得z?2,x?2?y0, ?nr??2?y0,1,2?. (10又Q???平面??D,?u??uur分)
??0,0,1?为平面??D的一个法向量,
?cosnr,u??uur?2?3y31??2?y2?cos0?2?0??1?46?2,解得3, ?在直线?C上存在点?,且C??2???3?3?2??. (12?3??分)?3法二:作?S?D?,则?S?3,由等面积法,得D??233,?C??33.分)
21、解:(1)由f?x???x3?x2?b,得f??x???3x2?2x??x?3x?2?,
令f??x??0,得x?0或x?23.
函数f??x?,f?x?在x?????12,1???上的变化情况如下表: x ?122 ????12,0??? 0 ???0,2?3?? ?3?2??3,1?? f??x? ? 0 ? 0 ? f?x? f???1??单调递单调递单调递?2? 减 极小值 增 极大值 减 Qf??1?3?2?4??2???8?b,f??3???27?b,?f????1?2???f??2??3??. 即最大值为f????1?332???8?b?8,?b?0. (3分) 第11页/共14页
12 ((2)由g?x???x2??a?2?x,得?x?lnx?a?x2?2x.
Qx??1,e?,lnx?1?x,且等号不能同时取得,?lnx?x,即x?lnx?0.
?x2?2x?x2?2x?a?恒成立,即a???. x?lnx?x?lnx?min?x?1??x?2?2lnx?, x2?2x令t?x??,x??1,e?,则t??x??2x?lnx?x?lnx?当x??1,e?时,x?1?0,lnx?1,x?2?2lnx?0,从而t??x??0.
?t?x?在区间?1,e?上为增函数,?t?x?min?t?1???1,a??1. (7分)
??f?x?,x?1(3)由条件F?x???.
gx,x?1????uuuruuurQ???Q是以?(?是坐标原点)为直角顶点的直角三角形,?????Q?0,
假设曲线y?F?x?上存在两点?,Q满足题意,则?,Q只能在y轴的两侧,不妨设
,则Q??t,t3?t2?(t?0). ??t,F?t??(t?0)
??t2?F?t??t3?t2??0,是否存在?,Q等价于该方程t?0且t?1是否有根.
当0?t?1时,方程可化为?t2???t3?t2??t3?t2??0,化简得t4?t2?1?0,此时方程无解;
当t?1时,方程为?t2?alnt?t3?t2??0,即??t?1?lnt, 设h?t???t?1?lnt(t?1),则h??t??lnt??1(t?1),
显然,当t?1时,即h?t?在区间?1,???上是增函数,h??t??0,h?t?的值域是?h?1?,???,
即?0,???.
?当a?0时方程总有解,即对于任意正实数a,曲线y?F?x?上总存在两点?,Q,
1t1a使得???Q是以?(?为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上.[来源:学科网] (12分)
第12页/共14页
共分享92篇相关文档