当前位置:首页 > (word完整版)九年级数学圆的知识点总结大全,推荐文档
第四章:《圆》
一、知识回顾
圆的周长: C=2πr或C=πd、圆的面积:S=πr2
圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径)
二、知识要点 一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内 ? d?r ? 点C在圆内; 2、点在圆上 ? d?r ? 点B在圆上; 3、点在圆外 ? d?r ? 点A在圆外; 三、直线与圆的位置关系
1、直线与圆相离 ? d?r ? 无交点;
1
ArBdCdO2、直线与圆相切 ? d?r ? 有一个交点; 3、直线与圆相交 ? d?r ? 有两个交点;
rdd=rrd
四、圆与圆的位置关系
外离(图1)? 无交点 ? d?R?r; 外切(图2)? 有一个交点 ? d?R?r; 相交(图3)? 有两个交点 ? R?r?d?R?r; 内切(图4)? 有一个交点 ? d?R?r; 内含(图5)? 无交点 ? d?R?r;
dddRrRrRr图1图2 图3 ddRrrR 图4图5
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
2
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径 ②AB?CD ③CE?DE ④ 弧BC?弧BD ⑤ 弧AC?弧AD 中任意2个条件推出其他3个结论。 A推论2:圆的两条平行弦所夹的弧相等。
CDO 即:在⊙O中,∵AB∥CD OEABCD ∴弧AC?弧BD B
六、圆心角定理
顶点到圆心的角,叫圆心角。
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论, EF即:①?AOB??DOE;②AB?DE;
OD③OC?OF;④ 弧BA?弧BD ACB
七、圆周角定理
C顶点在圆上,并且两边都与圆相交的角,叫圆周角。 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的BO角的一半。
即:∵?AOB和?ACB是弧AB所对的圆心角和圆周角 A ∴?AOB?2?ACB
此3
2、圆周角定理的推论:
D推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,的弧是等弧;
即:在⊙O中,∵?C、?D都是所对的圆周角 ∴?C??D
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所所对的弦是直径。
即:在⊙O中,∵AB是直径 或∵?C?90? ∴?C?90? ∴AB是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形。
即:在△ABC中,∵OC?OA?OB
∴△ABC是直角三角形或?C?90?
BC相等的圆周角所对
BOAC对的弧是半圆,
ABOC三角形是直角
AO注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在⊙O中,
∵四边形ABCD是内接四边形 ∴
CD?C??BAD?180?
BAE4
共分享92篇相关文档