当前位置:首页 > 双液相界面共组装制备可调孔径的磁性介孔二氧化硅球及其应用(2015) - 图文
JournaloftheAmericanChemicalSocietyArticlelargerthanthatofMagn-MSMs-170(5.0nm),andMagn-MSMs-Thesystemwasstirredat170,250,and500rpm,respectively,500hastwosetsofmesoporeslocatedat8.8and18.8nm,andsubsequently,asmallamountofwatersolutionwaswith-respectively.Itsuggeststhattheincreaseofprestirringratehelpsdrawnfordynamiclightscattering(DLS)measurementsat25°C.toexpandthemesoporessize,buttoofaststirringcancauseanAccordingtotheDLSresults,micelleshavearelativelyuniforminhomogeneousporeexpansion.Tofurthergaininformationsizeofabout6.0nmat170rpm(FigureS8a),andwhentheabouttheinteriorstructureofthesamples,theMagn-MSMsprestirring(priortoaddingTEOS)rateisincreasedto250rpm,samplewasslicedforTEMobservation.Themagneticcoreandmostofthemicellesizeincreasesto~20.2nm(FigureS8b),radiallyalignedmesoporeswithauniformsizecanbeclearlyalthoughsmallamountofmicellesremainthesizeofaboutvisibleintheslicedMagn-MSMs-170(FigureS6a).Whileinthe6.0nm.Withafaststirringof500rpm,mostmicellesachieveaslicedMagn-MSMs-500,inadditiontoradialmesoporesofsizeofabout20.0nm;meanwhilesomelargermicellesofaboutabout9.0nm,somelargermesoporesofabout30?40nmcan70.0nm(FigureS8c)arepresentduetothesolubilizationofbeobserved(FigureS6b),ingoodagreementwiththeSEMCTABmicellesenhancedbythedynamicshearingforceofhigh-images(FigureS2c).Table1showsthatthesampleswitha
speedstirring.
Basedontheaboveresults,weproposedashearingassistedTable1.TexturePropertiesandMagneticPropertyofthebiliquidinterfacecoassemblymechanismfortheformationofObtainedMagn-MSMs
core?shell?shellmagneticmesoporoussilicamicrospherestotal(Magn-MSMs).AsdepictedinFigure4,atthebeginning,atwo-phasesystemisformedbyaddinghydrophobicn-hexaneintosamplesareaBET(msurface2/g)a(cmvolumepore3/g)bpore(nm)sizecmagnetization(emu/g)
theaqueoussolutioncontainingCTABsurfactant,FeMagn-MSMs-1706230.915.034.5microspheres,andammonia?water.Then,undermildmechanical3O4@RFMagn-MSMs-2505070.989.0
36.8stirringat170?500rpm,n-hexanecanbecontinuouslyabsorbed196Magn-MSMs-500
498
0.96
8.8,18.8
37.1
bythepreformedCTABmicellesduetothestronghydrophobic50abinteractionbetweenCTABandn-hexanemolecule,whichis5TheBETspeci?csurfaceareaswerecalculatedusingadsorptiondata.srelatedwiththe“likedissolveslike”principle.Alsothewell-cinaj/basedP/PmatchedchainlengthofCTABandn-hexanehelpstostabilize120derivedon0rangefromthevolumeof0.05?theadsorptionadsorbed0.25.bThebranchesatPtotal/Pporevolumeswereestimated0~of0.995.ctheisothermsTheporebysizesusingwerethethecompositemicelles,38,39althoughthedistributionofn-hexane1.0BJHmethod.
inCTABmicellesvariesdynamicallybetweenthewaterand1 :in-hexanebulkphaseduringthecontinuousstirring.Thesizeofod theexpandedcompositemicellesisrelatedwiththeshearing|largermesoporehavelowersurfaceareasandlargerpore 51forceofthemechanicalstirring.Afterthat,upontheadditionof0volumes.2 ,TEOSinton-hexanephase,oligomersilicatenanoclusterscould1~Theyallhavehighsaturationmagnetizationvaluesof3 begeneratedattheoil/waterinterfacethroughhydrolysisandyfor36practicalemu/g,magneticwhichisseparationfavorableapplications.forafastmagneticItisworthresponsenotingluJthat,sincetheRFinterlayercanberemovedbycombustionincondensationofTEOScatalyzedbyammonia?water.They :)bair,suchacore?shell?shellstructurecanbeeasilyconvertedfurtherassociatewithCTABmicellesthroughelectrostaticinter-eWintoauniqueyolk?shellstructurewithmagneticcoretrappedaction,coassembleintorodliken-hexane-CTAB-silicacomposite( etinahollowmesoporoussilicamicrosphereviacalcinationtreat-micelleswithdi?erentsizes,anddepositonFeaDradialalignmentduetotheelectrostatic3O4@RFmicros-pheresthroughainterac- mentinairat500°Cfor5h(FigureS7).
nioFormationMechanism.Theabove-mentionedresultsclearlytionbetweenthecompositemicellesandhydrophilicRFshellandtaciindicatethattheevolutionofthemorphologyandporesizethelowestinterfaceenergyrequirement.23,40AfterthestructurelbofMagn-MSMshasdirectrelationshipwiththeprestirringrate.ofthecompositeis?xedwithacross-linkedsilicaframework,Pu Togaininsightaboutthein?uenceofstirringrate,wepreparedaCTABandn-hexanecanbecompletelyremovedthroughacetonebiliquidsystemofCTAB-ammonia?water?Fe3O4@RF/n-hexane.
treatment,resultingincore?shell?shellmagneticmesoporous
Figure4.SchematicillustrationoftheformationprocessforMagn-MSMswithtunablemesoporesizeviathebiliquidinterfacecoassembly.Inthebiliquidprestirringsystem,atdi?theerentwaterspeedsphaseofconsists170?500ofrpmwater,leadsFe3Oto4@RFCTABmicrospheres,micellesofdibasic?erentcatalyst,sizesandasasphericalresultofCTABthecontinuousmicelles.BeforedynamicaddingsolubilizationTEOS,theofncoassemble-hexaneintotheelectrostaticintoCTABrodlikemicelles.interactioncompositeAfterandthemicellesintroductionlowestwithinterfacediof?erentTEOS,energysizes,therequirement,depositgeneratedonnegativelytheandinterfacecharged?nally?xofsilicaoligomersinteractwiththemicellesinwater,theFemesostructure3O4@RFmicrospheresonFethroughmicrospheres.aradialalignmentThus,afterdueremovingCTABandn-hexane,Magn-MSMswithmesoporoussilicashellofdi?erentporesizescanbegenerated.
3O4@RFE
J.Am.Chem.DOI:Soc.10.1021/jacs.5b05619
XXXX,XXX,XXX?XXX
Downloaded by NORTHWESTERN POLYTECHNICAL UNIV on September 11, 2015 | http://pubs.acs.org JournaloftheAmericanChemicalSocietysilicamicrosphereswithdi?erentmesoporessize.Inthewholesynthesis,n-hexaneservesastheoilphasetoexpandthemicellesizesthroughdynamicallyswellingCTABmicelles.
ImmobilizationofTrypsinforSizeExclusionProteolysis.Proteolysisisanimportantbiocatalysisprocess,whichisausefulpathway41,42toacquireinformationonproteinsinproteomeanalysis.Thelowmolecular-weight(MW)proteomeshavearousedgreatinterestinunderstandingpathologicalandbio-medicalsystemsfortheir43potentialapplicationinthebiomarkersandsignalmolecules.However,thelowMWproteomedeterminationsareconsideredtobeagreatchallengeduetotheinterferenceofabundanthighMWproteomes.44,45Here,inthisstudy,weinvestigatedthefeasibilitytosolvetheseproblemsbyusingourMagn-MSMsthatpossesstwoimportantmerits,thatis,thelargeandtunableporesizesforimmobilizationofenzymeforpossiblesize-selectiveproteindigestion,andtheconvenientmagneticseparation.Enzymeimmobilizationhelpstoincreasethestabilityandactivityofenzymeduetoavoidanceofproteinself-enzymolysis,46unfolding?49andaggregationafterimmobilizedonsolidsupports.Traditionalcore?shellstructuralmagneticmesoporoussilicaparticlespossessmesoporesof2nmin196diameter,whichistoosmallforimmobilizationofenzymeinto50thepores.Ourmagneticmesoporoussilicamicrosphereswithb5.swell-controlledmesoporesof5.0?9.0nmcanbeservedasancajidealenzymesupports(Scheme1b).Trypsin,asphericalenzyme/120withsizeof3.8×3.8×3.8nm3,waschosentoimmobilizeinto1.0themesoporesofMagn-MSMs-250.Beforeimmobilization,1 :iGLYMOwasusedasalinkerfortrypsinduetothestrongod interactionofepoxygroupofGLYMOwithfunctionalgroupin| 51aminoacidresiduesoftrypsin.Throughsimpleaqueousreaction,02 trypsincouldbeimmobilizedintothemesoporesofMagn-,13 MSMs-250within1h,whichwascon?rmedbytheUVabsorp-ylutionvalueofthesupernatanttrypsinaftertheimmobilizationJ :)bprocedure.TheimmobilizationcapabilityofMagn-MSMs-250eWfortrypsincanreach97μg/mg(enzyme/supports),higherthan( emostofthereportedresultsbasedonmesoporoussilica.50taDFouriertransforminfrared(FTIR)spectra(FigureS9)ofMagn- nMSMs-250afterimmobilizingtrypsinexhibitnewcharacteristiciotacabsorptionbandsintherangeof1200?1600cm?1,furtherilbcon?rmingasuccessfulimmobilization.
Pu TrypsinimmobilizedMagn-MSMs-250(denotedasMagn-MSMs-trypsin)wasusedforthesizeexclusionproteolysis.Severalsmallproteinswithdi?erentmolecularweightandsizeincludingmyoglobin,lysozyme,andCyt-c49mixedwithalargeproteinBSA,respectively,weretestedforsizeexclusionproteolysisbyusingMagn-MSMs-trypsinwiththemesoporesizeof9.0nmindiameter.Forcomparison,theseproteinpairswiththesameconcentrationof0.5g/Lwerealsodigestedusingequalfreetrypsininaqueoussolutionfor2h.ThepeptidesdigestedfromtheseproteinswereeasilyseparatedwithamagnetanddetectedbyMALDI-TOFmassspectrometry.PeptidesdigestedfrommyoglobinandBSAwerebothdetectedbytheMALDI-TOFusingfreetrypsindigestioninsolution(Figure5a).However,byusingMagn-MSMs-trypsin,onlyasmallamountofpeptidefromBSAwasdetectedandadramaticallyincreasedamountofpeptidesfrommyoglobinwasdetected.ItimpliesthattrypsinimmobilizedinMagn-MSMsisaccessibleformyoglobinandinaccessibleforBSA,demonstratingane?cientsizeexclusionproteolysis.ThesequencecoverageofBSAandmyoglobinbyfreetrypsindigestionturnout30%and18%,respectively.WhileusingimmobilizedtrypsinonMagn-MSMstodigesttheproteins,thesequencecoveragesof5%forBSAand33%formyoglobinwereobtained,re?ectingobvioussuperioritydigestione?ciency
F
ArticleFigure5.MALDI-TOFspectraoftrypticdigestsof(a)myoglobin,(b)lysozyme,immobilizedandon(c)Magn-MSMsCyt-cmixedmicrosphereswithBSAafterandbeingfreetreatedtrypsinbyattrypsin37°Cforc,2h.ThepeptidepeaksatrelativelyhighS/Narelabeledwithm,L,lysozyme,andbwhichCyt-c,areandassignedBSA,respectively.
topeptidesderivedfrommyoglobin,forsmallprotein.Inthecaseoflysozyme?BSAmixture(Figure5b),usingfreetrypsinfordigestion,abundantBSApeptidefragmentsweredetected.Incontrast,Magn-MSMs-trypsindigestedpeptidesarealmostfromlysozyme.Thesequencecoverage(FigureS10)ofBSAdecreasedfrom40%to9%whilethatoflysozymeincreasedfrom27%to46%byMagn-MSMs-trypsindigestion,furtherindicatingthesize-independentdigestion.Besides,Magn-MSMs-trypsinalsorepresentsprioritydigestionforsmallproteinCyt-cthanforlargeBSA(Figure5c).AlltheseresultsshowthatMagn-MSMs-trypsincandigestproteinswithasmallsizeratherthanlargeBSAbecauseproteinssmallerthanthemesoporesizecaneasilyenterintothemesoporesandarein-poredigested,whilelargeproteinsareexcludedoutside.Themagn-MSMs-trypsincanbeeasilyrecycledbyusingamagnetandexhibitswell-retainedcatalyticperformanceafteruseforeighttimes.TherecycledMagn-MSMs-trypsinafteruseforeightcyclespossessesintactporestructureandcore?shellstructure(FigureS11),indicatinga■
goodstructureandperformancestabilityofthisnovelbiocatalyst.
CONCLUSIONS
Insummary,ashearingassistedinterfacecoassemblyinbiliquidphasesystemshasbeendevelopedtosynthesizehighquality
J.Am.Chem.DOI:Soc.10.1021/jacs.5b05619
XXXX,XXX,XXX?XXX
Downloaded by NORTHWESTERN POLYTECHNICAL UNIV on September 11, 2015 | http://pubs.acs.org JournaloftheAmericanChemicalSocietyArticlecore?shellmagneticmesoporoussilicamicrospheres(Magn-WeextendourappreciationtotheDeanshipofScienti?cMSMs)withlargetunablesizeandopenporestructure.ResearchatKingSaudUniversityforfundingtheworkthroughThroughtheinterfacecoassemblyofCTABmoleculesandtheresearchgroupProjectNo.RGP-227.WethankProf.silicaoligomersontheFe3O4@RFmicrospheresinn-hexane/waterbiliquidphasesystem,combinedwithmechanicalstirring,highlydispersibleMagn-MSMswithuniformsizes(~600nm),largeandtunableperpendicularmesoporesof5.0?9.0nm,highsurfaceareaupto623m2/g,andlargeporevolumeof■
GuangrongZhouforhelpinTEMcharacterization.
REFERENCES
(1)Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,0.9cm3/gcanbeobtained.Byutilizationoftheuniquecore?J.S.Nature1992,359,710.
shellstructure,magneticseparationtechnique,andthedesigned(2)Zhao,D.Y.;Feng,J.L.;Huo,Q.S.;Melosh,N.;Fredrickson,G.poresize(~9.0nm),trypsinwithamoleculesizeof~4.0nmH.;wassuccessfullyimmobilizedontheporewallofMagn-MSMs(3)Chmelka,Che,S.;Liu,B.F.;Z.;Stucky,Ohsuna,G.T.;D.Sakamoto,Science1998K.;,Terasaki,279,548.
O.;Tatsumi,withahighloadingcapacityof97μg/mg.TheimmobilizedT.enzymeexhibitsanexcellentsizeselectivityenzymolysisfor(4)NatureVinu,2004A.;Murugesan,,429,281.
V.;Tangermann,O.;Hartmann,M.Chem.Mater.lowmolecularproteinsinthemixtureofproteinswithdi?erent(5)Sun,2004Z.,16K.;,3056.
Deng,Y.H.;Wei,J.;Gu,D.;Tu,B.;Zhao,D.Y.sizesandgoodrecyclingstability.ConsideringthesimplicityChem.andgoodreproducibilityofthesynthesisroute,itisexpected(6)thattheinterfacecoassemblyinabiliquidsystemcanbe(7)Joo,Wan,Mater.S.Y.;2011H.;Zhao,,23Choi,D.,2176.
S.J.;Y.Oh,Chem.I.;Kwak,Rev.2007J.;Liu,,107Z.;(7),Terasaki,2821.
O.;Ryoo,extendedtodesignotherfunctionalnanostructureswithmulti-O.R.Nature2001,412,169.
components19650b■
andintegratedpropertiesforvariousapplications.
(8)Kim,J.;Lee,J.E.;Lee,J.;Yu,J.H.;Kim,B.C.;An,K.;Hwang,Y.;Shin,C.H.;Park,J.G.;Kim,J.;Hyeon,T.J.Am.Chem.Soc.2006,ASSOCIATEDCONTENT
1285.sSEM*
(9),688.
Zhang,L.;Qiao,S.Z.;Jin,Y.G.;Chen,Z.G.;Gu,H.C.;Lu,G.SSupportingInformationQ.(10)Adv.Yamada,Mater.2008T.;Zhou,,20,805.
imagesofFe3O4particles,Fe3O4@RFmicrospheres,H.S.;Uchida,H.;Tomita,M.;Ueno,Y.;cajMagn-MSMs-170,Magn-MSMs-250,andMagn-MSMs-500;Ichino,/12wide-angleX-raydi?ractionpatternsandmagnetization(11)Kim,T.;Honma,J.;Grate,I.;J.Asai,W.;K.;Wang,Katsube,P.Chem.T.Adv.Eng.Mater.Sci.20062002,,6114,,1017.812.01hysteresisloopsofMagn-MSMs-170.Nitrogenadsorption?(12)Fan,J.;Shui,W.Q.;Yang,P.Y.;Wang,X.Y.;Xu,Y.M.;Wang,.01desorptionisothermsandporesizedistributionsofMagn-H. :ioMSMs-250andMagn-MSMs-500.TEMimagesofMagn-(13)H.;d | MSMs-170andMagn-MSMs-500afterultrathinmicrotom-(14)Katz,Chen,Park,E.;X.;J.;An,Willner,Zhao,D.K.J.;I.Hwang,Angew.Y.Chem.Y.Chem.,-Eur.S.;Park,Int.J.2005J.Ed.,11,5391.G.;2004Noh,,43H.,6042.J.;Kim,J.510ming.TEMimagesoftheyolk?shellmagneticmesoporousY.;2 ,(15)Park,Lu,J.A.H.;H.;Hwang,Salabas,N.E.M.;L.;Schuth,Hyeon,F.T.Angew.Nat.Mater.Chem.,2004Int.,Ed.3,891.2007,13 silicamicrospheresobtainedafterremovingthemiddleRFresin46ylushellthroughcalcinationtreatmentofMagn-MSMs-250and(16),1222.
Ge,J.P.;Zhang,Q.;Zhang,T.R.;Yin,Y.D.Angew.Chem.,Int.J :)Magn-MSMs-500at500°Cfor5hinair.DLSmeasurementEd.2008,47,8924.
beWresultsofmicellesintheaqueoussolutions,FTIRspectraof(17)Zhang,L.;Qiao,S.Z.;Jin,Y.G.;Chen,Z.G.;Gu,H.C.;Lu,G.( eMagn-MSMs,trypsin,andMagn-MSMs-trypsin,sequenceQ.Adv.Mater.2008,20,805.
taDcoverageofmyoglobin,lysozyme,andCyt-cmixedwithBSA(18)Deng,Y.H.;Deng,C.H.;Qi,D.W.;Liu,C.;Liu,J.;Zhang,X. nunderdigestionbyfreetrypsinandimmobilizedtrypsinonM.;Zhao,D.Y.Adv.Mater.2009,21,1377.
iotaMagn-MSMsmicrospheresat37°Cfor2h.TheSupporting(19)Min,Q.H.;Zhang,X.X.;Wu,R.A.;Zou,H.F.;Zhu,J.J.Chem.cilInformationisavailablefreeofchargeontheACSPublicationsCommun.2011,47,10725.
bPuwebsite(20)Kim,J.;Kim,H.S.;Lee,N.;Kim,T.;Kim,H.;Yu,T.;Song,I. ■atDOI:10.1021/jacs.5b05619.
C.;Moon,W.K.;Hyeon,T.Angew.Chem.,Int.Ed.2008,47,8438.(21)Kim,J.;Lee,J.E.;Lee,J.;Yu,J.H.;Kim,B.C.;An,K.;Hwang,AUTHORINFORMATION
Y.;Shin,C.H.;Park,J.G.;Kim,J.;Hyeon,T.J.Am.Chem.Soc.2006,CorrespondingAuthor
128,688.
*yhdeng@fudan.edu.cn
(22)Zhao,W.R.;Chen,H.R.;Li,Y.S.;Li,L.;Lang,M.D.;Shi,J.L.Adv.Funct.Mater.2008,18,2780.
Notes
(23)Deng,Y.H.;Qi,D.W.;Deng,C.H.;Zhang,X.M.;Zhao,D.Y.■
Theauthorsdeclarenocompeting?nancialinterest.
J.Am.Chem.Soc.2008,130,28.
(24)Deng,Y.H.;Cai,Y.;Sun,Z.K.;Liu,J.;Liu,C.;Wei,J.;Li,W.;ACKNOWLEDGMENTS
Liu,C.;Wang,Y.;Zhao,D.Y.J.Am.Chem.Soc.2010,132,8466.ThisworkwassupportedbytheStateKey973Programof(25)Zhang,L.;Qiao,S.Z.;Jin,Y.G.;Chen,Z.G.;Gu,H.C.;Lu,G.PRC(2013CB934104),theNSFofChina(51372041,Q.Adv.Mater.2008,20,805.
51422202,51402049,and51432004),theinnovationprogram(26)Zhao,W.R.;Gu,J.L.;Zhang,L.X.;Chen,H.R.;Shi,J.L.J.Am.Chem.ofShanghaiMunicipalEducationCommission(13ZZ004),(27)Kim,Soc.2005J.;Lee,,127J.,E.;8916.
Lee,J.;Yu,J.H.;Kim,B.C.;An,K.;Hwang,ProgramforNewCenturyExcellentTalentsinUniversityY.;Shin,C.H.;Park,J.G.;Kim,J.;Hyeon,T.J.Am.Chem.Soc.2006,(NCET-12-0123),the“ShuGuang”Project(13SG02)128,688.
supportedbyShanghaiMunicipalEducationCommissionand(28)ShanghaiEducationDevelopmentFoundation,Shanghai(29)Knezevic,Yang,J.P.;N.Shen,Process.D.Appl.K.;Wei,Ceram.Y.;Li,2014W.;,8Zhang,,109.
F.;Kong,B.;CommitteeofScienceandTechnology(14ZR1400600),Zhang,S.H.;Teng,W.;Fan,J.W.;Zhang,W.X.;Dou,S.X.;Zhao,D.StateKeyLaboratoryofASIC&System(2015KF002),Y.NanoRes.2015,DOI:10.1007/s12274-015-0758-2.
FoundationofStateKeyLaboratoryofPollutionControland(30)Liu,F.;Tian,H.;He,J.H.;Liu,H.Y.Int.J.Nanosci.2012,11,ResourceReuse(TongjiUniversity),China(PCRRF14017),and1240031.
QatarUniversitystartupGrantNo.QUSG-CAS-MST-14\\15-1.
(31)Li,W.;Zhang,B.L.;Li,X.J.;Zhang,H.P.;Zhang,Q.Y.Appl.Catal.,A2013,459,65.
G
J.Am.Chem.DOI:Soc.10.1021/jacs.5b05619
XXXX,XXX,XXX?XXX
Downloaded by NORTHWESTERN POLYTECHNICAL UNIV on September 11, 2015 | http://pubs.acs.org JournaloftheAmericanChemicalSociety(32)Hudson,S.;Cooney,J.;Magner,E.Angew.Chem.,Int.Ed.2008,47(33),8582.
Wang,M.H.;Sun,Z.K.;Yue,Q.;Yang,J.;Wang,X.Q.;Deng,Y.Xiong,(34)H.;Liu,Yu,C.L.Q.;J.;Z.;Sun,Zhao,Gao,Z.Y.;K.;D.Li,Deng,Y.J.Am.F.Y.;Y.Zhao,H.;Chem.Zou,Soc.2014,136,1884.D.Y.Y.;Angew.Li,C.Y.;Chem.,Guo,Int.X.H.;Ed.2009(35),48Hartmann,,5875.
M.Chem.Mater.2005,17,4577.
Deng,(36)Sun,17653.
Y.H.;Z.Kaliaguine,K.;Sun,B.;S.;Qiao,Zhao,M.D.H.;Y.J.Wei,Am.J.;Chem.Yue,Soc.Q.;2012Wang,,134C.;,Maurin,(37)Rouquerol,F.;Rouquerol,J.;Sing,K.S.W.;Llewellyn,P.;NewYork,G.2014;Adsorptionpp447by?Powders449.
andPorousSolids;AcademicPress:Chem.(38)Wu,Eng.Y.DataT.;Chai,2011,J.56L.;,3089.
Li,X.Q.;Yang,B.;Shang,S.C.;Lu,J.J.J.H.(39)Tokiwa,Y.;(40)J.Phys.Teng,Chem.Z.G.;BSakamoto,2015Zheng,,119H.;G.,6235.
Takiue,T.;Aratono,M.;Matsubara,F.;Dou,Y.Q.;Li,W.;Mou,C.Y.;Zhang,2173.
X.H.;Asiri,A.M.;Zhao,D.Y.Angew.Chem.,Int.Ed.2012,51,(41)(42)Pandey,Domonl,A.;B.;Mann,Aebersold,M.Nature2000,405,837.19(43)Anderson,N.L.;Anderson,R.ScienceN.G.Mol.2006Cell.,312Proteomics,212.
2002,1,65845.
0b5(44)Tirumalai,R.S.;Chan,K.C.;Prieto,D.A.;Issaq,H.J.;.scConrads,T.P.;Veenstra,T.D.Mol.Cell.Proteomics2003,2,aj/120P.;(45)Cheng,Terracciano,M.M.C.;R.;Nijdam,Gaspari,A.M.;J.;Petricoin,Testa,F.;E.Pasqua,F.;Liotta,L.;L.Tagliaferri,1096.A.;Cuda,1.0G.;1 :i(46)Ferrari,Klibanov,M.;Venuta,A.M.ScienceS.Proteomics1983,2192006,719.
,6,3243.od (47)| 5102H.(48)Corma,SmallZhang,2006Y.A.;Fornes,V.;Rey,F.Adv.Mater.2002,14,71.
,2H.;,1170.
Liu,Y.;Kong,J.L.;Yang,P.Y.;Tang,Y.;Liu,B. ,13 ylX.(49)uJ (50)J.;Tang,Zhang,Lin,S.;Y.;Y.Yao,Yang,H.;Wang,G.P.P.;Y.X.Qi,Angew.Y.;Shan,D.W.;Chem.,W.;Li,Y.;Int.Wu,Deng,Ed.B.2005Y.;Fan,C.H.;,44H.Z.;Yu,Yang,,615.P.Y.;:)beZhang,X.M.Anal.Chem.2008,80,3655.
W( etaD niotacilbPu H
ArticleJ.Am.Chem.DOI:Soc.10.1021/jacs.5b05619
XXXX,XXX,XXX?XXX
Downloaded by NORTHWESTERN POLYTECHNICAL UNIV on September 11, 2015 | http://pubs.acs.org
共分享92篇相关文档