当前位置:首页 > 新人教版七年级下册全部数学教案
二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,正方向;两个坐标轴的交点为平面直角坐标系的原点。 点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分, 分别叫第一象限,第二象限,第三象限和第四象限。 你能说出例1中各点在第几象限吗? 例2在平面直角坐标系中描出下列各点。 A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?练习:教材43页:练习1,2。 三.深入探索
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。 四、巩固练习:教材44页习题6.1——第1题;教材45页——第2,4,5,6。 五、课堂小结
1.平面直角坐标系;2.点的坐标及其表示;3.各象限内点的坐标的特征;4.坐标的简单应用 六、作业布置:课本P66第3题
7.2.1用坐标表示地理位置
教学目标:1.了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力. 2.通过学习如何用坐标表示地理位置,发展学生的空间观念. 3.通过学习,学生能够用坐标系来描述地理位置.
4.通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度. 重点:利用坐标表示地理位置.
难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题. 教学过程 一、创设问题情境
观察:教材第63页图7.2-1.
33
今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题. 二、师生互动,探究用坐标表示地理位置的方法 活动1:
根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置. 小刚家:出校门向东走150米,再向北走200米.
小强家:出校门向西走200米,再向北走350米,最后再向东走50米. 小敏家:出校门向南走100米,再向东走300米,最后向南走75米.
问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?
小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).
由学生画出平面直角坐标系,标出学校的位置,即(0,0). 引导学生一同完成示意图.
问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点? 可以很容易地写出三位同学家的位置.
活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程. 经过学生讨论、交流,教师适当引导后得出结论:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 应注意的问题:
用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.
有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. 活动3:进一步理解如何用坐标表示地理位置. 展示问题:(教材第82页活动1,公园平面图)
34
让学生分别画出直角坐标系,标出其他景点的位置. 三、课堂小结:让学生归纳说出如何利用坐标表示地理位置. 四、课后作业:第79页第5题、第8题.
7.2.2用坐标表示平移
教学目标:1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.
2.发展学生的形象思维能力,和数形结合的意识. 3.用坐标表示平移体现了平面直角坐标系在数学中的应用. 4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化. 重点:掌握坐标变化与图形平移的关系.
难点:利用坐标变化与图形平移的关系解决实际问题. 教学过程 一、引言
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用. 二、新课
展示问题:教材第75页图.
(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?
(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).
教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系? 引导学生动手操作,按要求画出图形后,解答此例题.
35
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到. 课本P77思考题:由学生动手画图并解答. 归纳:
三、练习:教材第78页练习;习题7.2中第1、2、4题. 四、作业布置 第78页第3题.
第七章 平面直角坐标系
小结
一、本章知识结构图: 二、平面直角坐标系
1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系.平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面. x轴和y把坐标平面分成 四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.
2、不同位置点的坐标的特征: (1)、各象限内点的坐标有如下特征: 点P(x, y)在第一象限 x >0,y>0; 点P(x, y)在第二象限 x<0,y>0;
36
共分享92篇相关文档