当前位置:首页 > 小学奥数四年级举一反三6-10
例5:用3 ~ 6这四个数字分别组成两个两位数,使这两个两位数的乘积最大。
分析与解答:解决这个问题应考虑两点:(1)尽可能把大数放在高位;(2)尽可能使两个数的差最小。所以应把6和5这两个数字放在十位,4和3放在个位。根据“两个因数的差越小,积越大”的规律,3应放在6的后面,4应放在5的后面。63×54=3402
练 习 五
1,用1 ~ 4这四个数字分别组成两个两位数,使这两个两位数的乘积最大。
2,用5 ~ 8这四个数字分别组成两个两位数,使这两个两位数的乘积最大。
3,用3 ~ 8这六个数字分别组成两个三位数,使这两个三位数的乘积最大。
第八周 巧妙求和(一)
专题简析:若干个数排成一列称为数列。数列中的每一个数称
为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:
第n项=首项+(项数-1)×公差 项数公式:
项数=(末项-首项)÷公差+1
例1:有一个数列:4,10,16,22,?,52,这个数列共有多少项?
分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练 习 一
1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?
2,有一个等差数列:2,5,8,11,?,101,这个等差数列共有多少项?
3,已知等差数列11,16,21,26,?,1001,这个等差数列共有多少项?
例2:有一等差数列:3,7,11,15,??,这个等差数列的第100项是多少?
分析与解答:这个等差数列的首项是3,公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399
练 习 二
1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少? 2,求1,4,7,10??这个等差数列的第30项。 3,求等差数列2,6,10,14??的第100项。
共分享92篇相关文档