当前位置:首页 > (word完整版)勾股定理知识点梳理,推荐文档
勾股定理知识点梳理
1.直角三角型有哪些特殊的性质;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt△ABC中,a2?b2?c2;③面积,两种计算面积的方法。
2.如何判定一个三角形是直角三角形呢? ①有一个内角为直角的三角形是直角三角形;②两个内角互余的三角形是直角三角形;③如果三角形的三边长为a、b、c满足a2?b2?c2,那么这个三角形是直角三角形
3.勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4.互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2?b2?c2中,a,b,c为正整数时,称a,b,c为一组勾股数
②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17;9,40,41等
6.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:
DHEFbAbacCGacab1方法一:4S??S正方形EFGH?S正方形ABCD,4?ab?(b?a)2?c2,化简可证.
2 方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
Bc1四个直角三角形的面积与小正方形面积的和为S?4?ab?c2?2ab?c2
2大正方形面积为S?(a?b)2?a2?2ab?b2 所以a2?b2?c2
bccabDaAaccBbb111方法三:S梯形?(a?b)?(a?b),S梯形?2S?ADE?S?ABE?2?ab?c2,化简得证
222
EaC一.典型例题
类型一:勾股定理的直接用法
1、在Rt△ABC中,∠C=90°
(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
举一反三
【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在
中,
,
,
. 求:BC的长.
思路点拨:由条件则有
,
出BC的长.
举一反三【变式1】如图,已知:P. 求证:
.
,想到构造含
角的直角三角形,为此作
于D,
,再由勾股定理计算出AD、DC的长,进而求
,,于
【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。
类型三:勾股定理的实际应用
(一)用勾股定理求两点之间的距离问题
3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了
到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。 举一反三
【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?
【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H.
(二)用勾股定理求最短问题
4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
然后进行比较,得出结论. 举一反三
思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,
【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 解:
如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得 (提问:勾股定理) ∴ AC=
=
=
≈10.77(cm)(勾股定理).
答:最短路程约为10.77cm.
类型四:利用勾股定理作长为
5、作长为
、
、
的线段
的线段。
,直角边为
思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于
和1的直角三角形斜边长就是
,类似地可作
的点。
, 。
举一反三 【变式】在数轴上表示 解析:可以把
看作是直角三角形的斜边,
为了有利于画图让其他两边的长为整数,
而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径, 以O为圆心做弧,弧与数轴的交点B即为
。
类型五:逆命题与勾股定理逆定理
6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚.(正确) 2.原命题:对顶角相等(正确)
3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确) 4.原命题:角平分线上的点,到这个角的两边距离相等.(正确) 思路点拨:掌握原命题与逆命题的关系。 解析:1. 逆命题:有四只脚的是猫(不正确) 2. 逆命题:相等的角是对顶角(不正确)
3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.?(正确) 4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确) 总结升华:本题是为了学习勾股定理的逆命题做准备。
7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
共分享92篇相关文档