云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (整理)六年级奥数比和比例2

(整理)六年级奥数比和比例2

  • 62 次阅读
  • 3 次下载
  • 2025/6/7 14:14:20

-------------

六年奥数综合练习题十二答案(比和比例关系)

比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解. 这一讲分三个内容: 一、比和比的分配; 二、倍数的变化;

三、有比例关系的其他问题. 一、比和比的分配

最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比.

例1 甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比.

解:设甲的周长是2.

甲与乙的面积之比是

答:甲与乙的面积之比是864∶875. 作为答数,求出的比最好都写成整数.

例2 如右图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲、乙两部分,它们的面积之比是10∶7.

求上底AB与下底CD的长度之比.

解:因为E是中点,三角形CDE与三角形CEA面积相等.

三角形ADC与三角形ABC高相等,它们的底边的比AB∶CD=三角形ABC的面积∶三角形ADC的面积 =(10-7)∶(7×2)= 3∶14. 答:AB∶CD=3∶14.

两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点.

例3 大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比.

解:大杯与中杯容量之比是5∶2=10∶4, 中杯与小杯容量之比是4∶3,

大杯、中杯与小杯容量之比是10∶4∶3. ∶

=(10×2+4×3+3×4)∶(10×5+4×4+3×3) =44∶75.

答:两者容量之比是44∶75.

把5∶2与4∶3这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例3中已告诉你连比的方法,-------------

-------------

再举一个更一般的例子.

甲∶乙=3∶5,乙∶丙=7∶4, 3∶5=3×7∶5×7=21∶35, 7∶4=7×5∶4×5=35∶20, 甲∶乙∶丙=21∶35∶20.

花了多少钱?

解:根据比例与乘法的关系,

连比后是

甲∶乙∶丙=2×16∶3×16∶3×2 =32∶48∶63.

答:甲、乙、丙三人共花了429元.

例5 有甲、乙、丙三枚长短不相同的钉子,甲与乙

,而它们留在墙外的部分一样长.问:甲、乙、丙的长度之比是多少? 解:设甲的长度是6份.

∶x=5∶4.

乙与丙的长度之比是

而甲与乙的长度之比是 6∶5=30∶25. 甲∶乙∶丙=30∶25∶26.

答:甲、乙、丙的长度之比是30∶25∶26.

-------------

-------------

于利用已知条件6∶5,使大部分计算都整数化.这是解比例和分数问题的常用手段.

例6 甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元? 解一:设每种糖果所花钱数为1,因此平均价是

答:这些糖果每千克平均价是27.5元.

上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有:

事实上,有稍简捷的解题思路.

解二:先求出这三种糖果所买数量之比.

不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙=15∶11∶10. 平均数是(15+11+10)÷3=12.

单价33元的可买10份,要买12份,单价是

下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.

例7 一个分数,分子与分母之和是100.如果分子加23,分母加32,

解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此

例8 加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?

解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.

三人工作效率之比是

他们分别需要完成的工作量是

-------------

-------------

所需时间是

700×3=2100分钟)=35小时 .

答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时. 这是三个数量按比例分配的典型例题.

例9 某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是: 甲:12∶13,乙:5∶3,丙:2∶1, 那么丙有多少名男会员?

解:甲组的人数是100÷2=50(人).

乙、丙两组男会员人数是 56-24=32 (人).

答:丙组有12名男会员.

上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔

例10 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间? 解一:通常我们要求出小龙走平路与下坡的速度,先求出走各段路程的速度比. 上坡、平路、下坡的速度之比是

走完全程所用时间 -------------

搜索更多关于: (整理)六年级奥数比和比例2 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

------------- 六年奥数综合练习题十二答案(比和比例关系) 比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解. 这一讲分三个内容: 一、比和比的分配; 二、倍数的变化; 三、有比例关系的其他问题. 一、比和比的分配 最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比. 例1 甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比. 解:设甲的周长是2. 甲与乙的面积之比是

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com