当前位置:首页 > 中考数学填空题压轴精选(答案详细)1
34.108°
解:∠EFG=∠DEF=24°,∠FGD=∠BGE=2∠DEF=48° ∠GFC=180°-48°=132°,∠CFE=132°-24°=108°
500 27解:如图,设盒子底面等边三角形的边长为x,盒子的高为y,则有: 35.
x+23y=10,∴x=10-23y 由题意得:3xy=∴3y=
323x,即3y=x, 44
3520(10-23y),解得:y=3,代入得x= 43932025500×()×(cm3) 3=43927盒子的容积V=
36.5
解:如图,过O分别作OE⊥AC于E,OF⊥BD于F,则四边形MEOF为矩形 ∴OE +OF =MF +OF =OM =3
111S四边形ABCD=AC2BM+AC2DM=AC2BD
2222222111≤×( AC +BD )=( 4AE +4BF ) 2242
2
2
2
2
B M E O C A F D
=AE +BF =OA -OE +OB -OF
2222
=2OA -(OE +OF )=2×2-3=5
故四边形ABCD的面积最大值为5
222222
137.
3解:如图,过O2作O2H⊥AB于H,连结O2A、O2O1
设AC=3k,则CD=4k,DB=2k,∴r1=2k,AO1=5k,O1B=4k,AB=9k,O2O1=r2-r1=r2-2k ∴HO1=5k-
91k=k 222
2
2
2
在Rt△O2AH中,O2H =O2A-AH =r2-(∴r2-(
2
92222
k)在Rt△O2HO1中,∵O2H +HO1=O2O1 2A C H O1 D B O2 92122
k)+(k)=(r2-2k),解得r2=6k 22r2k1∴1== r26k3
38.13
解:由x+y=19得(x+y)[(x+y)-3xy]=19,把x+y=1代入,得xy=-6
222
所以x+y=(x+y)-2xy=13
332
中考填空题精选
39.-1
解:易知C点坐标为(0,c),若△ABC是直角三角形,则∠C=90°
设A(x1,0),B(x2,0),则x1,x2是方程ax+bx+c=0的两个不相等的实数根
bc故x1+x2=-,x1x2=
aa
2
b2?4acb2c∴AB =(x1-x2)=(x1+x2)-4x1x2=(-)-4×=
aa2a222222AC =x1+c,BC =x2+c
2
2
2
b2?4acb2?4ac22
由AC +BC =AB 得x1+c+x2+c=,即(x1+x2)-2x1x2+2c=
a2a22
2
2
2
2
2
2
b2?4ac2b2c∴(-)-2×+2c= 2aaa整理得ac=-1
40.4
解:如图,将△ABE绕点A逆时针旋转90°,得到△ADF,则AE=4
B
41.15°或75°
B C 解:如图1,当AB、AC在OA的同侧时,∠BAC=15°;
如图2,当AB、AC在OA的异侧时,∠BAC=75°
A O
A F D
E
B C A O 1 2解:如图,设B(x1,0),C(x2,0) 42.
令a(a+1)x-(2a+1)x+1=0,即(ax-1)[(a+1)x-1]=0
11∵a>0,∴x1=,x2=
aa?11111∴BC=x2-x1=-=,BD=
aa?1a(a?1)2a(a?1)
C 图1
图2
2
y 又∵顶点A(
2a?111,),∴AD=
2a(a?1)4a(a?1)4a(a?1)D O B A C x 1AD4a(a?1)1故tan∠ABC=tan∠ABD===
12BD2a(a?1)A B M O P N
a?3b43.(-,-)
22
A′ 44.2
解:如图,作点A关于MN的对称点A′,连结A′B,交MN于点P,连结OB、OA′,则PA+PB最小 易证∠A′OB=90°,所以△A′OB是等腰直角三角形 故PA+PB=PA′+PB=A′B=2OB=
2MN=2 2中考填空题精选
45.E(
29173,-)、F(,0),点P运动的总路径的长为
24851?13x = ?21???y = x?x?2 解:联立? 解得22??y = ?3?y = x?21??2??x2 = 1 ?y = ?1?2∵点A在点B的左侧,∴A(抛物线的对称轴为x=则A′(0,-
13,-),B(1,-1) 221,如图,作点A关于对称轴的对称点A′,点B关于x轴的对称点B′ 43),B′(1,1) 2设直线A′B′的解析式为y=kx+b,则: 5?3k = ????b = ?2 2 解得??
3?b = ???k?b = 1?2?∴直线A′B′的解析式为y=
5333x-,令y=0,得x=,∴直线A′B′与x轴的交点为F(,0) 2255
把x=
1537117代入y=x-,得y=-,∴直线A′B′与直线x=的交点为E(,-) 4228448173,-)、F(,0)为所求 485
故点E(
y 5 2F O E A′ C B A H x 过点B作BH⊥AA′的延长线于点H,则A′H=1,B′H=29在Rt△A′B′H中,A′B′=A?H2+B?H2=
2
B′ 29∴点P运动的总路径的长为AE+EF+FB=A′B′=
2
46.
4 2725 5解:如图,延长AM交BC于H,设BC=1,则AC=2,AB=5,从而CD=由EC=
1AC=1=BC,∠GCE=∠ABC,可证Rt△GCE≌Rt△ABC 2E A N F C M H B
35DG3得CG=AB=5,∴DG=,∴=
52CDDG32BC= 由Rt△FGD∽Rt△BCD得FG=
2CDD
由M为CD中点得MG=MD+DG=设EN=x,则CH=2x 由△MNG∽△MHC得NG=
53545+=,∴MG=4CM 555MG2CH=8x CMG
中考填空题精选
又由Rt△GCE≌Rt△ABC得EG=AC=2 而EG=EN+NG=x+8x=9x ∴9x=2,x=
22,即EN= 992EN4∴=9=
327FG2
47.30
解:∵7+6=85=9+2,即BC +CD =DA +AB ∴△BCD与△DAB都是直角三角形
22222222
故S四边形ABCD=S△BCD+S△DAB=
48.132
1(7×6+9×2)=30 2解:若11为直角边,设另一条直角边为a,斜边为c,则a+11=c
2
即(c+a)(c-a)=11=121×1
∴c+a=121,c-a=1,解得a=60,c=61, ∴三角形的周长为11+60+61=132
222
若11为斜边,设两条直角边分别为a,b,则a+b=11=121,方程无正整数解,这种情况不存在 故三角形的周长等于132
49.15
解:如图,设⊙O与AC相切于E点,连接OE,则OE⊥AC
A 过D作DF⊥AC于F,连结OD,则OE∥DF
∵AB=AC,OB=OD,∴∠B=∠C=∠ODB ∴OD∥AC,∴四边形ODFE是平行四边形 又OD=OE,∠OEF=90°,∴四边形ODFE是正方形,∴DF=OE
E OE35O 在Rt△AOE中,sinA==,∴OA=OE
3OA5F 5又AB=OA+OB=16,∴OE+OE=16
3B C D ∴OE=6,∴DF=6 故D到AC的距离为6
222
1a2?b2 2解:如图,连结CO并延长交⊙O于D,连结BD,则CBD=90°
⌒=BDC ⌒ ∴∠ABD=90°+∠B=∠A,∴ACD50.
⌒= BD⌒,∴AC=BD ∴ AC
∴CD=a2?b2
1故⊙O的半径为a2?b2
2
中考填空题精选
C O A B D
共分享92篇相关文档