µ±Ç°Î»ÖãºÊ×Ò³ > ²ÎÊý×ÔѰÓÅÄ£ºý¿ØÖÆÆ÷ÓÅ»¯·½·¨µÄÑо¿
Î÷°²¹¤Òµ´óѧѧʿѧλÂÛÎÄ ¢ÙÓÉÓÚ³£¹æÄ£ºý¿ØÖÆÆ÷´ó¶à²ÉÓÃÎó²îºÍÎó²î±ä»¯ÂÊ×÷ΪÊäÈë±äÁ¿,´Ó±¾ÖÊÉÏÀ´½²µÈͬÓÚPD½á¹¹£¬ÉÙ»ý·Ö»·½Ú,¹Ê´æÔÚÎÈ̬Îó²î¡£Òò´Ë,±¾½ÚÔÚ¿ØÖÆÆ÷µÄÊä³ö¶Ë¼ÓÈë»ý·Ö»·½Ú,ÒÔÏû³ýÎÈ̬Îó²î¡£
ͼ4.2»ùÓÚµ¥´¿ÐÍ·¨µÄ²ÎÊý×ÔѰÓÅÄ£ºý¿ØÖÆÆ÷
¢Ú½¨Á¢ÓÅ»¯Ä¿±êº¯Êý,ͨ¹ýµ¥´¿Ðη¨Ñ°ÓÅ,ÔÚϵͳ¶¯Ì¬ÏìÓ¦¹ý³ÌÖÐ,×Ô¶¯µ÷ÕûÁ¿»¯Òò×Ó¡¢±ÈÀýÒò×ÓÒÔ¼°»ý·Ö»·½ÚÖеĻý·ÖУÕýÒò×Ó¡£Ò»°ãÀ´Ëµ,ÔÚÄ£ºý¿ØÖÆÆ÷ÖÐ,Á¿»¯Òò×ÓÓëϵͳµÄÁéÃô¶ÈÓйØ,ËüÖ±½ÓÓ°Ïì¿ØÖÆÏµÍ³µÄ¶¯Ì¬ÏìÓ¦¡¢Îȶ¨ÐԺͿØÖƾ«¶È¡£Á¿»¯Òò×ÓKeºÍKecÔ½´ó,ϵͳµÄ¿ØÖƾ«¶ÈÔ½¸ß,Òò´ËÒªÌá¸ß¿ØÖƾ«¶È,±ØÐëÑ¡ÓýϴóµÄKeºÍKec¡£µ«KeºÍKecµÄÔö´ó,¿ÉÄܵ¼ÖÂϵͳ³¬µ÷Ôö´ó,µ÷½Úʱ¼äÔö¼Ó,¶¯Ì¬ÏìÓ¦±ä»µ¡£Í¬Ñù,Ôö´óKuÄܼõСÎÈ̬Îó²î,µ«ÏµÍ³µÄÎȶ¨ÐÔϽµ¡£»ý·Ö»·½ÚµÄ×÷ÓÃÔÚÓÚÏû³ýϵͳµÄÎÈ̬Îó²î¡£»ý·ÖУÕýÒò×ÓKiÔ½´ó,ϵͳµÄ¾²Ì¬Îó²îÏû³ýµÃÔ½¿ì,µ«Ki¹ý´ó,»á²úÉú»ý·Ö±¥ºÍÏÖÏó,´Ó¶øÊ§È¥µ÷½ÚÄÜÁ¦,ÈôKi¹ýС,½«Ê¹ÏµÍ³ÎÈ̬Îó²îÄÑÒÔÏû³ý¡£Òò´Ë,ΪÁ˼æ¹ËϵͳµÄ¶¯¾²Ì¬ÐÔÄÜÖ¸±ê,±ØËæ»úÊÔÑé·¨(»ò̽Ë÷·¨),Ëü²»±Ø¼ÆËãÄ¿±êº¯ÊýµÄÌݶÈ,¶øÊÇͨ¹ý¼ÆËãÈô¸Éµã(¼´ÉèÐëÒªÇóÄ£ºý¿ØÖÆÆ÷Äܹ»Í¨¹ýÓÅ»¯¼ÆËã,ÔÚÏß²»¶Ïµ÷ÕûKe,Kec,KuºÍKi,ÒÔÂú×ãϵͳµÄÐÔÄÜÒªÇó¡£ÔÚѰÓŹý³ÌÖÐ,¸÷²ÎÊýÒò×ӵĵ÷Õû¹ý³ÌÈçÏÂ:µ±Îó²îºÍÎó²îµÄ±ä»¯Âʽϴóʱ,ËõСKeºÍKec,ÒÔ»ñµÃ½ÏƽÎȵĿØÖÆÌØÐÔ,±£Ö¤ÏµÍ³µÄÎȶ¨ÐÔ,ͬʱÊʵ±Ôö´óKuºÍKiÀ´Ìá¸ß¿ìËÙÐÔ,¸ÄÉÆÏµÍ³µÄ¶¯Ì¬ÐÔÄÜ¡£µ±Îó²î»òÎó²î±ä»¯ÂʽÏСʱ,ϵͳÒѽӽüÎÈ̬,ÔòÔö´óKeºÍKec,Ìá¸ß¿ØÖƵÄÁéÃô¶È,ͬʱËõСKu,Ki,ÒÔ±ÜÃⳬµ÷ºÍÕñµ´,ʹϵͳ¾¡¿ì½øÈëÎÈ̬¡£
²ÎÊýѰÓÅ·½·¨ºÜ¶à,µ«ÓÉÓÚµ¥´¿Ðη¨¾ßÓпØÖƲÎÊýÊÕÁ²¿ì,¼ÆË㹤×÷Á¿Ð¡,¼òµ¥ÊµÓõÈÓÅÁ¼ÐÔÄܹ㷺ΪÈËÃÇËùʹÓᣵ¥´¿Ðη¨ÊôÓڼƱäÁ¿)´¦µÄº¯ÊýÖµ,È»ºó½«ËüÃǽøÐбȽÏ,´ÓËüÃÇÖ®¼äµÄ´óС¹ØÏµ¾Í¿ÉÒÔÅжϳöº¯Êý±ä»¯µÄ´óÖÂÇ÷ÊÆ,ÒÔ×÷ΪËÑË÷·½ÏòµÄ²Î¿¼¡£
¶øÔÚµÚ3ÕÂÖУ¬ÎÒÃǵÄÄ£ºý¿ØÖÆÆ÷µÄÊäÈë¡¢Êä³öÂÛÓòÏàͬ£¬¶ÔÕâÀàÄ£ºý¿ØÖÆÆ÷£¬Æä¿ØÖƹæÔò¿É±íʾΪ£º
U1=round(?E1+(1-?)DE1)
21
Î÷°²¹¤Òµ´óѧѧʿѧλÂÛÎÄ ÆäÖÐroundΪȡÕûº¯Êý£¬E1±íʾe1µÄÄ£ºý¼¯£¬DE1±íʾde1µÄÄ£ºý¼¯£¬U1±íʾu1µÄÄ£ºý¼¯¡£µ±?È¡0µ½1Ö®¼ä²»Í¬µÄֵʱ£¬±ã¿ÉµÃµ½²»Í¬µÄÄ£ºý¿ØÖƹæÔò¡£ÕâÖÖÉú³ÉÄ£ºý¿ØÖƹæÔòµÄ·½·¨¿ÉÓÃÒÔÏÂMATLAB³ÌÐòʵÏÖ£º for i=1:5
for j=1:5
rr(i,j)=round(alpha*i+(1-alpha)*j)£» end
end
³ÌÐòÖÐalpha±íʾ?£¬Í¨¹ý¸Ä±ä?Öµ¿É·½±ãµØÐÞ¸ÄÄ£ºý¿ØÖƹæÔò¡£µ±?=0.5ʱÓÃÉÏÊö·½·¨µÃµ½µÄ¿ØÖƹæÔò¼´Îª±í3.1Ëùʾģºý¿ØÖƹæÔò¡£
4.2 Ä¿±êº¯ÊýµÄѡȡ
¿ØÖÆÏµÍ³¿ÉÒÔÓÃÒ»¸öÖ¸±êÀ´±íʾϵͳµÄ¶¯Ì¬Æ·ÖÊ£¬³ÆÎª×ÛºÏÐÔÖ¸±ê¡£Îó²î×¼Ôò¾ÍÊÇÕâÑùÒ»ÖÖÐÔÄÜÖ¸±ê¡£¿ØÖÆÏµÍ³µÄÌØÐÔͨ¹ýÎó²îµÄ»ý·ÖÀ´ÆÀ¶¨¡£Ò²¾ÍÊÇʵ¼ÊÊä³öÓëÆÚÍûÊä³ö¼äÆ«²îµÄij¸öº¯ÊýµÄ»ý·Öʽ±íʾµÄÒ»ÖÖÐÔÄÜÖ¸±ê¡£ÐÔÄÜÖ¸±êÊǺâÁ¿¿ØÖÆÏµÍ³ÐÔÄÜÓÅÁ¼¶ÈµÄÒ»Öֳ߶ȡ£³£ÓõÄÎó²î»ý·Ö×¼ÔòÓÐÆ½·½Îó²î»ý·Ö×¼Ôò¡¢Ê±¼ä³Ëƽ·½Îó²î»ý·Ö×¼Ôò¡¢¾ø¶ÔÎó²î»ý·Ö×¼ÔòºÍʱ¼ä³Ë¾ø¶ÔÎó²î»ý·Ö×¼ÔòËÄÖÖ¡£ ¢Ù ƽ·½Îó²î»ý·Ö×¼Ôò Ó¢ÎÄËõд ISE¡£×¼ÔòµÄ¾ßÌåÐÎʽΪ
?J??0e(t)dt £¨4.1£©
2ÆäÖÐe(t)±íʾʵ¼ÊÊä³öÓëÆÚÍûÊä³öµÄÆ«²î£¬tΪʱ¼ä¡£ÔÚ¿ØÖƹ¤³ÌÖÐ,Õâ¸ö×¼Ôò´ú±íÒÔÄÜÁ¿ÏûºÄ×÷ΪϵͳÐÔÄܵįÀ¼Û¡£°´ÕÕÕâÖÖ×¼ÔòÉè¼ÆµÄ¿ØÖÆÏµÍ³£¬³£³£¾ßÓнϿìµÄÏìÓ¦ËٶȺͽϴóµÄÕñµ´ÐÔ£¨¼û¹ý¶É¹ý³Ì£©£¬Ïà¶ÔÎȶ¨ÐԲ ¢Ú ʱ¼ä³Ëƽ·½Îó²î»ý·Ö×¼Ôò Ó¢ÎÄËõдITSE¡£×¼ÔòµÄÐÎʽÊÇ
J???0te(t)dt £¨4.2£©
2Õâ¸ö×¼ÔòµÄÌØµãÊÇ×ÅÖØ¿¼ÂÇ˲̬ÏìÓ¦ºóÆÚ³öÏÖµÄÎó²î£¬½ÏÉÙ¿¼ÂÇÏìÓ¦ÖдóµÄÆðʼÎó²î¡£
¢Û ¾ø¶ÔÎó²î»ý·Ö×¼Ôò Ó¢ÎÄËõд IAE¡£×¼ÔòµÄÐÎʽΪ
?J??0e(t)dt £¨4.3£©
ÆäÖÐ|e(t)|±íʾe(t)µÄ¾ø¶ÔÖµ¡£¶ÔÓÚÓîÖæ·É´¬ÏµÍ³£¬Õâ¸ö×¼Ôò±íʾÒÔȼÁÏÏûºÄ×÷ΪÐÔÄܵįÀ¼ÛÖ¸±ê¡£»ùÓÚÕâÖÖ×¼ÔòÉè¼ÆµÄϵͳ£¬¾ßÓÐÊʵ±µÄ×èÄáºÍÁ¼ºÃµÄ˲̬ÏìÓ¦£¬È±µãÊǵ±ÏµÍ³²ÎÊýµÄÑ¡Ôñ²»Í¬Ê±ÔÚÐÔÄÜÖ¸±êÉϵķ´Ó¦²»Ã÷ÏÔ¡£ ¢Ü ʱ¼ä³Ë¾ø¶ÔÎó²î»ý·Ö×¼Ôò Ó¢ÎÄËõдITAE¡£×¼ÔòµÄ±í´ïʽΪ
22
Î÷°²¹¤Òµ´óѧѧʿѧλÂÛÎÄ J???0te(t)dt £¨4.4£©
ʱ¼ätÓëϵͳÎó²îº¯Êýe(t)¾ø¶ÔÖµµÄ³Ë»ý¶ÔÓÚʱ¼ätµÄ»ý·Ö´ïµ½×îС,ϵͳµÄµ÷½ÚÐÔÄÜ×î¼Ñ.°´´Ë×¼ÔòÉè¼ÆµÄ¿ØÖÆÏµÍ³,˲̬ÏìÓ¦µÄÕñµ´ÐÔС£¬ÇÒ¶Ô²ÎÊý¾ßÓÐÁ¼ºÃµÄÑ¡ÔñÐÔ¡£È±µãÊÇÓ÷ÖÎö·¨¼ÆËãºÜÀ§ÄÑ¡£Îó²î»ý·Ö×¼ÔòÒѱ»ÍƹãÓÃ×÷Éè¼ÆµÄÒ»ÖÖÐÔÄÜÖ¸±ê¡£ÕâÀÎÒÃÇÓÅ»¯µÄÄ¿±êÊÇʹϵͳ¾ßÓС°¿ìËÙ--ÎÞ³¬µ÷¡±µÄ½×Ô¾ÏìÓ¦ÌØÐÔ¡£ËùÒÔÔÚÉÏÊö¿ØÖÆÏµÍ³µÄ²ÎÊýÓÅ»¯Éè¼ÆÖг£ÓõÄÄ¿±êº¯ÊýÖпɿ´³ö£¬ITAE×¼Ôò¿Éʹ¿ØÖÆÏµÍ³¾ßÓпìËÙÏìÓ¦ÌØÐÔ£¬Òò´ËËùѡĿ±êº¯ÊýÖÐÓ¦º¬ÓÐITAE×¼Ôò¡£¶øÒª´ïµ½Ê¹ÏµÍ³¶¯Ì¬ÏìÓ¦¡°ÎÞ³¬µ÷¡±µÄÄ¿µÄ£¬ÔòÐèÔÚÄ¿±êº¯ÊýÖмÓÈë¶Ôϵͳ³¬µ÷Á¿µÄÔ¼Êø¡£ÓÉ´Ë¿ÉÒÔÈ·¶¨ÏµÍ³²ÎÊýÓÅ»¯µÄÄ¿±êº¯ÊýΪ£º
OBJ?ʽÖÐtsΪ·ÂÕæÊ±¼ä¡£
?ts0te(t)dt £¨4.5£©
4.3²ÎÊýÓÅ»¯Ä£ºý¿ØÖÆÆ÷µÄ½¨Á¢
Ê×ÏȽ¨Á¢Ò»¸öMATLABº¯ÊýÎļþ£¬¶¨ÃûΪobj.m¡£Õâ¸öº¯ÊýÒÔ?¡¢Ke¡¢Kc¡¢KuΪ×Ô±äÁ¿£¬Ä¿±êº¯ÊýÖµvobjΪÊä³ö¡£º¯ÊýÎļþobj.mµÄ³ÌÐòÇåµ¥ÈçÏ£º function vobj=obj(x)£» global flc£» global k£» global alpha£» global ke£» global kc£» global ku£» global t£» global y£» global vobj£» alpha=x(1)£» ke=x(2)£» kc=x(3)£» ku=x(4)£»
%¶¨ÒåÄ£ºý¿ØÖÆÆ÷µÄÊäÈë Êä³ö±äÁ¿¼°ÆäÁ¥Êô¶Èº¯Êý flc=newfis('flc')£»
flc=addvar(flc,'input','e1',[-6 6])£»
flc=addmf(flc,'input',1,'NB','trapmf',[-6,-6,-5,-3])£» flc=addmf(flc,'input',1,'NS','trapmf',[-5,-3,-2,0])£» flc=addmf(flc,'input',1,'ZR','trimf',[-2,0,2])£»
23
Î÷°²¹¤Òµ´óѧѧʿѧλÂÛÎÄ flc=addmf(flc,'input',1,'PS','trapmf',[0 2 3 5])£» flc=addmf(flc,'input',1,'PB','trapmf',[3,5,6,6])£» flc=addvar(flc,'input','de1',[-6 6])£»
flc=addmf(flc,'input',2,'NB','trapmf',[-6,-6,-5,-3])£» flc=addmf(flc,'input',2,'NS','trapmf',[-5,-3,-2,0])£» flc=addmf(flc,'input',2,'ZR','trimf',[-2,0,2])£» flc=addmf(flc,'input',2,'PS','trapmf',[0,2,3,5])£» flc=addmf(flc,'input',2,'PB','trapmf',[3,5,6,6])£» flc=addvar(flc,'output','u1',[-6 6])£»
flc=addmf(flc,'output',1,'NB','trapmf',[-6,-6,-5,-3])£» flc=addmf(flc,'output',1,'NS','trapmf',[-5,-3,-2,0])£» flc=addmf(flc,'output',1,'ZR','trimf',[-2,0,2])£» flc=addmf(flc,'output',1,'PS','trapmf',[0,2,3,5])£» flc=addmf(flc,'output',1,'PB','trapmf',[3,5,6,6])£» %Éú³ÉÄ£ºý¿ØÖƹæÔò for i=1:5
for j=1:5
rr(i,j)=round(alpha*i+(1-alpha)*j)£» end end
r1=zeros(prod(size(rr)),3)£» k1=1£»
for i=1:size(rr,1) for j=1:size(rr,2)
r1(k1,:)=[i,j,rr(i,j)]£» k1=k1+1£» end end
[r,s]=size(r1)£» r2=ones(r,2)£»
rulelist=[r1,r2]£»
flc=addrule(flc,rulelist)£»
%Ä£ºý¿ØÖÆÏµÍ³·ÂÕæ¼°Ä¿±êº¯ÊýÖµ¼ÆËã
opt1=simset('srcworkspace','current')£» [tt,xx,out]=sim('model',[0 30],opt1)£» outlong=length(out)£» vobj=out(outlong)£»
Æä´Î½¨Á¢ÓÅ»¯Ö÷³ÌÐòÎļþoptm.mÕâÀïÓÃ×îÓÅ»¯¹¤¾ßÏäÖеĶà±äÁ¿Ô¼Êø×îС
24
¹²·ÖÏí92ƪÏà¹ØÎĵµ