当前位置:首页 > 金属学与热处理课后习题答案(崔忠圻版)-7-10章
2、长大方向不同,即晶界的移动方向不同。
7-5 分析回复和再结晶阶段空位与位错的变化及其对性能的影响。 答: 回复阶段:
回复:是指冷塑性变形的金属在加热时,在光学显微组织发生改变前(即再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
空位和位错的变化及对性能的影响:
回复过程中,空位和位错发生运动,从而改变了他们的数量和组态。 低温回复时,主要涉及空位的运动。空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。电阻率对空位密度比较敏感,因此其数值会有显著下降。而力学性能对空位的变化不敏感,没有变化。
中温回复时,主要涉及位错的运动。由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。 高温回复时,主要涉及位错的运动。位错不但可以滑移、而且可以攀移,发生多边化,使错密度有所降低,降低系统部分内应力,从而使硬度、强度略有下降,塑性、韧性得到改善。
综上,回复过程可以使冷塑性变形的金属在基本保持加工硬化的状态下降低其内应力(主要是第一类内应力),减轻工件的翘曲和变形,降低电阻率,提高材料的耐蚀性并改善其塑性和韧性,提高工件使用时的安全性。
再结晶阶段:
再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显著下降,性能也发生显著变化并恢复到冷变形前的水平。
空位和位错的变化及对性能的影响:
再结晶阶段主要是位错发生滑移、攀移和多变化,新的无畸变晶粒形成,位错密度显著下降,因塑性变形而造成的内应力可完全被消除,促使硬度和强度显著下降,塑性和韧性得到明显提高。
7-6 何谓临界变形度?在工业生产中有何实际意义。
临界变形度:金属在冷塑性变形时,当变形度达到某一数值(一般金属均在2%-10%范围内)时,再结晶后的晶粒变得特别粗大。这是由于此时的变形度不大,晶核长大线速度和形核率的比值很大,因此得到特别粗大的晶粒。把对应得到特别粗大晶粒的变形度称为临界变形度。
实际意义:通常,粗大的晶粒对金属的力学性能十分不能,降低力学性能指标,因此在实际生产时,应当避免在临界变形度范围内进行压力加工。但是,有时为了某种特殊目的,需要得到粗晶粒钢时,例如用于制造电机或变压器的硅钢来说,晶粒越粗大越好(磁滞损耗小,效应高),,可以利用这种现象,制取粗晶粒甚至单晶。
7-7 一块纯锡板被枪弹击穿,经再结晶退火后,弹孔周围的晶粒大小有何特征,并说明原因。
答:
弹孔周围晶粒大小特征:晶粒大小随距弹孔的距离产生梯度变化,即距离弹孔距离越近晶粒越细,距离越远晶粒越大,并且在某一距离处(变形量处于临界变形量范围内),出现特别粗大晶粒组织。
原因:
1、锡板被枪弹击穿产生的弹孔相当于弹孔处产生了剧烈的冷塑性变形,且距离弹孔越近则变形越剧烈。
2、对冷塑性变形的金属进行再结晶退火,则冷变形的晶粒必然要发生再结晶,且再结晶后的晶粒大小与变形度密切相关,这是因为随着变形度的增加,形
变储存能增加,再结晶驱动力增加,形核率N和晶粒长大线速度G同时增加,但G/N的比值减小,使再结晶的晶粒随变形度增加而变细。
3、然而,当变形度在某一临界变形度范围内(一般金属在2%-10%范围内),由于变形度不大,G/N的比值很大,使再结晶的晶粒特别粗大。
7-8 某厂对高锰钢制碎矿机颚板进行固溶处理时,经1100℃加热后,用冷拔钢丝绳吊挂,由起重吊车送往淬火水槽。行至途中,钢丝绳突然断裂。这条钢丝绳是新的,事先经过检查,并无瑕疵。试分析钢丝绳断裂原因。
答: 原因:
1、按题中所述钢丝绳的质量没有问题,那么钢丝绳发生断裂则必然使是由于所吊颚板重力对钢丝绳产生的应力超过了钢丝绳的抗拉强度造成的。在吊运过程中颚板对钢丝绳产生的应力没有变化,那么发生变化的则必然是钢丝绳的强度。
2、由题述,该钢丝绳是冷拔而成,及结果冷塑性变形而成,必然产生了加工硬化现象。由于颚板经过1100加热固溶处理,所以在吊运过程中,高温颚板对冷拔钢丝绳起到了加热作用,当钢丝绳温度超过其再结晶温度时,则会发生再结晶现象,导致钢丝绳强度显著下降,致使颚板重力对钢丝绳产生的应力超过了钢丝绳的强度,导致钢丝绳断裂。
7-9 设有一楔形板坯结果冷轧后得到相同厚度的板材,然后进行再结晶退火,试问该板材的晶粒大小是否均匀?
不均匀 原因:
1、对冷塑性变形的金属进行再结晶退火,则冷变形的晶粒必然要发生再结晶,且再结晶后的晶粒大小与变形度密切相关,这是因为随着变形度的增加,形变储存能增加,再结晶驱动力增加,形核率N和晶粒长大线速度G同时增加,但G/N的比值减小,使再结晶的晶粒随变形度增加而变细。
2、此外,当变形度在临界变形度范围内(一般金属在2%-10%范围内),由于变形度不大,G/N的比值很大,使再结晶的晶粒特别粗大。
3、由题述,是由厚度不一的楔形板冷变形成相同厚度的板材,则板材的不同位置的变形度必然不同,所以再结晶后的晶粒大小也必然不同。
7-10 金属材料在热加工时为了获得细小晶粒组织,应该注意一些什么问题? 答:
热加工是在高于再结晶温度以上的塑性变形过程,塑性变形引起的加工硬化和回复再结晶引起的软化几乎同时进行。所以,在热加工时为了获得细小晶粒我觉得应该注意以下几点:
1、变形程度。变形度越大则再结晶晶粒的尺寸越小,同时要避开临界变形度范围,防止产生粗大晶粒。
2、热加工的温度。即再结晶温度,再结晶温度越高,再结晶的晶粒越大,而且易于引起二次再结晶,得到异常粗大的晶粒组织。
3、变形速度。增大变形速度,可推迟再结晶,并提高再结晶转变速度,细化晶粒。
4、热加工后的冷却。冷却速度过慢,会造成晶粒粗大。
5、原始晶粒的大小。这是因为当变形度一定时,材料的原始晶粒越细,则再结晶后的晶粒越细。
6、在金属材料中加入适量的Al、Ti、V、Nb等碳、氮化物形成元素,析出弥散的第二相质点,可以有效地阻止高温下晶粒的长大。
7-11 为获得细小的晶粒组织,应根据什么原则制订塑性变形及退火工艺? 答:
塑性变形原则:
增大变形度,避开临界变形度范围,保证变形均匀性。
共分享92篇相关文档