当前位置:首页 > 金属学与热处理课后习题答案(崔忠圻版)-7-10章
氏体形核的位置越多,则奥氏体形核越多,晶核长大速;加速奥氏体的形成,缩短保温时间。
9-11 何为第一类回火脆性和第二类回火脆性?它们产生的原因和消除方法? 答:
定义:
回火脆性:淬火钢回火时的冲击韧性并不总是随回火温度的升高单调的增高,有些钢在一定的温度范围内回火时,其冲击韧性显著下降,这种脆化现象称为回火脆性。
第一类回火脆性:钢在250-400℃温度范围内回火时出现的回火脆性称为第一类回火脆性,也称低温回火脆性。
第二类回火脆性:钢在450-650℃温度范围内回火时出现的回火脆性称为第二类回火脆性,也叫高温回火脆性。
产生原因:
第一类回火脆性:低温回火脆性几乎在所有的工业用钢中都会出现。一般认为,其产生是由于马氏体分解时沿马氏体条或片的界面上析出断续的薄壳状碳化物,降低了晶界的断裂强度,使晶界称为裂纹扩展的路径,因而产生脆性。
第二类回火脆性:高温回火脆性主要在合金结构钢中出现,碳钢中一般不出现这种脆性。其产生原因主要是As、Sn、Pb、Sb、Bi、P、S等有害杂质元素在回火冷却过程中向原奥氏体晶界偏聚,减弱了奥氏体晶界上原子间的结合力,降低晶界的断裂强度。Mn、Ni、Cr等合金元素不但促进这些杂质元素向晶界偏聚,而且自身也向晶界偏聚,进一步降低了晶界断裂强度,增加回火脆性。
消除方法: 第一类回火脆性: A、避开脆化温度范围回火
B、用等温淬火代替淬火+回火
C、在钢中加入Nb、V、Ti等细化奥氏体晶粒元素,增加晶界面积 D、降低杂质元素含量 第二类回火脆性:
A、高温回火后采用快速冷却方法可以抑制回火脆性,但不适用于对回火脆性敏感的较大工件
B、在钢中加入Nb、V、Ti等细化奥氏体晶粒元素,增加晶界面积 C、降低杂质元素含量
D、加入适量的Mo、W等合金元素可抑制杂质元素向原奥氏体晶界的偏聚 E、对亚共析钢可采取A1-A3临界区的亚温淬火方法,使P等杂质元素溶入残留的铁素体中,减轻它们向原奥氏体晶界的偏聚程度
F、采用形变热处理方法,可以细化晶粒,减轻高温回火脆性
9-12 比较过共析钢的TTT曲线和CCT曲线的异同点。为什么在连续冷却过程中得不到贝氏体组织?与亚共析钢的CCT曲线中Ms线相比,过共析钢的Ms线有何不同点,为什么?
答:
TTT曲线和CCT曲线的异同点: 相同点:
1、都具有渗碳体的先共析线。 2、相变都有一定的孕育期。
3、曲线中都有一条相变开始线和一条相变完成线。
不同点:
1、CCT曲线中无贝氏体转变区。
2、CCT曲线中发生相变的温度比TTT曲线中的低 3、CCT曲线中发生相变的孕育期比TTT曲线中长。 得不到贝氏体组织的原因:
在过共析钢的奥氏体中,碳浓度高,使贝氏体孕育期大大延长,在连续冷却转变时贝氏体转变来不及进行便冷却至低温。
Ms线的不同点及原因:
不同点:亚共析钢的CCT曲线中的Ms线右端呈下降趋势,而过共析钢的CCT曲线中的Ms线右端呈上升趋势。
原因:这是因为在亚共析钢中由于先共析铁素体的析出和贝氏体转变,造成周围奥氏体的富碳,从而导致Ms线下降。而过共析钢由于先共析渗碳体的析出,而且在连续冷却过程中也无贝氏体转变,使周围奥氏体贫碳,导致Ms线上升。
9-13 阐述获得粒状珠光体的两种方法? 答:
粒状珠光体可以有过冷奥氏体直接分解而成,也可以由片状珠光体球化而成,还 可以由淬火组织回火形成。原始组织不同,其形成机理也不同。
1、由过冷奥氏体直接分解得到粒状珠光体的过程:
要由过冷奥氏体直接形成粒状珠光体,必须使奥氏体晶粒内形成大量均匀弥散的渗碳体晶核,即控制奥氏体化温度,使奥氏体内残存大量未溶的渗碳体颗粒;同时使奥氏体内碳浓度不均匀,存在高碳去和低碳区。再将奥氏体冷却至略低于Ar1以下某一温度缓冷,在过冷度较小的情况下就能在奥氏体晶粒内形成大量均匀弥散的渗碳体晶核,每个渗碳体晶核在独立长大的同时,必然使其周围母相奥氏体贫碳而形成铁素体,从而直接形成粒状珠光体。
2、由片状珠光体直接球化而成的过程:
将片状珠光体钢加热至略低于A1温度长时间保温,得到粒状珠光体。此时,片状珠光体球化的驱动力是铁素体和渗碳体之间相界面(或界面能)的减少。
3、由淬火组织回火形成的过程
将淬火马氏体钢加热到一定温度以上回火,使马氏体分解、析出颗粒状渗碳体,得到回复或再结晶的铁素体加粒状渗碳体的组织。
9-14 金属和合金的晶粒大小对力学性能有何影响?获得细晶粒的方法? 答:此题主要是指奥氏体晶粒 晶粒大小对力学性能影响:
奥氏体晶粒小:钢热处理后的组织细小,强度高、塑性好,冲击韧性高。 奥氏体晶粒大:钢热处理后的组织粗大,显著降低钢的冲击韧性,提高钢的韧脆
转变温度,增加淬火变形和开裂的倾向。当晶粒大小不均匀时, 还显著降低钢的结构强度,引起应力集中,容易产生脆性断裂。 获得细晶粒的方法:
1、降低加热温度,加快加热速度,缩短保温时间,采用快速加热短时保温的奥氏体化工艺。
2、冶炼过程中用Al脱氧或在钢种加入Zr、Ti、Nb、V等强碳化物形成元素,能形成高熔点的弥散碳化物和氮化物,可以细化奥氏体晶粒。
3、细小的原始组织可以得到细小的奥氏体晶粒,可以采用多次快速加热-冷却的方法细化奥氏体晶粒。
4、采用形变热处理可以细化奥氏体晶粒。
共分享92篇相关文档