当前位置:首页 > [复习必做]2020七年级数学下学期期末第二次模拟试题 新人教版
最新精品学习资料
重庆市江2017-2018学年七年级数学下学期期末第二次模拟试题
(全卷共五个大题,满分150分,考试时间100分钟)
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题中,都给出了代号为A、B、C、D
的四个答案,其中只有一个是正确的. 1.给出四个实数2,?2,?1,
227,其中为无理数的是( C ) A.2 B.?1 C.?2 D.227 2.点M(-2,4)到x轴的距离是( A )
A.4 B.-4 C.2 D.-2
3. 若a?b,则下列各式中一定正确的是( D )
A.ab?0 B.ab?0 C.a?b?0 D.?a??b 4.下列调查中,适宜采用抽样调查(普查)方式的是( C )
A.了解我国民众对“乐天萨德事件”的看法 B.了解浙江卫视“奔跑吧兄弟”节目的收视率 C.调查我校某班学生喜欢上数学课的情况 D.调查某类烟花爆竹燃放的安全情况 5.在数轴上表示不等式x?5?1的解集,正确的是( B )
A. B. C. D. 6.方程组??x?y?5 ①,由②-①,得到的方程是( C ) ?2x?y?10 ② A.3x?10 B.3x??5 C.x?5 D.x??5
7.如图,已知?2??3?180?,?1?120?,则?4?( D ) A.120? B.80? C.75? D.60?
8.如果m?10?1,那么m的取值范围是( C ) (第7题图)
A.0?m?1 B.1?m?2 C.2?m?3 D.3?m?4
9.已知??x?2?ax?by1是二元一次方程组??71的解,则a?b的值为( A )
?y??ax?by? A.-1 B.1 C.2 D.3 10.下列四个命题中,假命题...
的是( B ) A.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行
B.在数轴上,一个实数的绝对值越大,则表示这个数的点在数轴上离原点越远,越靠右
C.坐标平面内的点,与有序数对是一 一对应的 D.经过两点有一条直线,并且只有一条直线
11.某中学七年级一班40名同学为患严重疾病的同学献爱心,共捐款2000元,情况如下表:
最新精品学习资料,强烈推荐下载!
1
最新精品学习资料
表格中捐款40元和50元的人数不小心被墨水污染已看不清楚,若设捐款40元的有x名同学,捐款50 元的有y名同学,根据题意,可得方程组( D )
x?y?22A.???x?y?22?x?y?22?x?y?22 B.? C.? D.?
?50x?40y?2000?50x?40y?1000?40x?50y?1000?40x?50y?2000?x?1?2k12.若关于x的不等式组?有解,且关于x的方程kx?2(x?2)?(3x?2)有非负整数解,则符合条?2....??x?k?4k?6件的所有整数k的和为( B ) A.-5 B.-9 C.-12 D.-16 二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在对应的横线上. 13.点P(-3,-2)在第 三 象限.
x?3?0x?314.方程组?的解是 ? . ???x?y?2?y??115.某校在开展创办“特色学校”前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最
喜欢的活动”问卷调查,在这个问题中,样本容量是 40 . 16.计算:(?1)2017?16?38? -3 . 17.关于x、y的二元一次方程组??3x?y?1?3a的解满足不等式x?y?0,则a的取值范围是 a??1. x?3y?1?a?18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移
动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2017的坐标为 (1008,1) .
三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须写出必要的演算过程或推理步骤.
19.如图,AB∥CD,∠B=50°,CF是∠BCE的平分线,求∠ECF的度数. 解:∵AB∥CD,∴∠B+∠BCE=180°…(3分)
∵∠B=50°,∴∠BCE=180°-∠B=180°-50°=130°…(5分) 又∵CF是∠BCE的平分线,∴∠ECF=
11∠BCE=?130??65?…(8分) 2220.某市对参加2017年中考的20000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数
分布直方图的一部分,请根据图表信息回答下列问题:
(1)在频数分布表中,a的值为 60 ,b的值为 0.05 .(2)请将频数分布直方图补充完整.(60) (3)若视力在4.9以上(含4.9)均属正常,根据上述信息估计全市初中毕业生中视力正常的学生有多少人? 解:(1)60…(2分) 最新精品学习资料,强烈推荐下载!
2
最新精品学习资料
0.05…(4分) (2)补全频数分布直方图 如图所示:(60)…(6分) (3)视力正常的人数为:
20000?(0.3+0.05)=7000(人) 答:………(8分)
四、解答题(本大题4个小题,每小题l0分,共40分)解答时每小题必须写出必要的演算过程或推理步骤. 21.(1)解方程组??5x?2y?3?2x?3?6?x (2)解不等式组?
?x?5y?6?1?4x?5x?2解:(1)由②,得:x=6-5y ③…(1分) (2)解不等式①得:x?3…(7分) 把③代入①,得:5(6-5y)-2y=3,解得:y=1…(3分)
把y=1代入③得:x=6-5?1=1…(4分) 解不等式②得: …(9分) ∴原方程组的解为??x?11…(5分) ∴原不等式组的解集为:?x?3…(10分)
3?y?122.如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点
A(-1,0),B(4,0),C(3,2).(1)在所给的直角坐标系中画出三角形ABC;(2)把三角形ABC向左平移3个单位,再向上平移2个单位得到三角形A′B′C′,画出三角形A′B′C′并写出点C′的坐标;(3)求三角形A′B′C′的面积.
解:(1)如图三角形ABC为所求…(3分) (2)如图三角形A′B′C′为所求…(6分) C′(0,4)…(8分)
(3)三角形A′B′C′的面积是:
1?5?2?5…(10分) 223.请把下列证明过程补充完整.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,
∠1=∠2=∠E,∠3=∠4.求证:AB∥CD. 证明:∵∠2=∠E(已知)
∴ AD ∥BC( 内错角相等,两直线平行 ) ∴∠3=∠ DAC ( 两直线平行,内错角相等 )
∵∠3=∠4(已知) ∴∠4=∠ DAC ( 等量代换 )
∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF 即∠BAF=∠ DAC ∴∠4=∠ BAF (等量代换) ∴ AB∥CD ( 同位角相等,两直线平行 )
24. 一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称
这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”. (1)请判断:2561 是 (填“是”或“不是”)“和平数”.…(2分)
最新精品学习资料,强烈推荐下载!
3
最新精品学习资料
(2)直接写出:最小的“和平数”是 1001 ,最大的“和平数”是 9999 .…(6分)
(3)如果一个“和平数”的十位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是 14的倍数,求满足条件的所有“和平数”.
(3)解:设满足条件的“和平数”的千位数字为a,百位数字为b,则个位数字为2a,十位数字为a+b-2a=b-a 由题意得:b?b?a?14k,即2b?a?14k…(8分) ∴b?a?14k,∵0?a?5,0?b?9,且a,b均为正整数,∴k只能取1, 2 ∴当a?2时,b?8;当a?4时,b?9.∴满足条件的“和平数”为2864或4958…(10分) 五、解答题(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须写出必要的演算过程
或推理步骤.
25.今年6月初,由于持续暴雨,某市遭受严重水涝灾害,群众失去家园,市民政局为解决灾民困难,紧
急组织了一批救灾帐篷和食品准备送往灾区.已知这批物资中,帐篷和食品共320件,且帐篷比食品多80件.(1)求帐篷和食品各有多少件?(2)现计划租用A、B两种货车共8辆,一次性将这批物资全部送到灾民手中,已知两种货车可装帐篷和食品的件数以及每辆货车所需付运费情况如下表,求出运费最少的方案?最少运费是多少?
解:(1)设帐篷有x件,食品有y件,根据题意得:
?x?y?320?x?200…(2分)解得…(4分) ??x?y?80y?120??答:帐篷有200件,食品有120件…(5分)
(2)设租用A种货车a辆,则租用B种货车(8-a)辆,根据题意得:? 解得:2?a?4…(8分) ∵a取整数,∴a=2,3,4. 当a?2时,租车费用为:780?2?700?(8?2)?5760(元) 当a?3时,租车费用为:780?3?700?(8?3)?5840(元)
当a?4时,租车费用为:780?4?700?(8?4)?5920(元) ∵5760?5840?5920, ∴租用A种货车2辆,B种货车6辆,可使运费最少,最少为5760元…(10分)
26.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0).且a,b满足|a+3|+(a-2b+7)=0. 现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连 接AC,BD.(1)请直接写出A,B两点的坐标.(2)如图2,点P是线段AC上的一个动点,点Q是线段CD 的中点,连接PQ,PO,当点P在线段AC上移动 时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的 数量关系,并证明你的结论.(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相 等?若存在,直接写出点M的坐标;若不存在,试说明理由. 解:(1)A(-3,0) B(2,0)…(4分) (2)∠PQD+∠OPQ+∠POB=360°…(5分)
证明:过点P作PE∥AB,由平移的性质可得AB∥CD,
最新精品学习资料,强烈推荐下载!
4
2
?40a?20(8?a)?200…(7分)
10a?20(8?a)?120? ∴AB∥PE∥CD,
∴∠PQD+∠EPQ =180°,∠OPE +∠POB=180°, ∴∠PQD+∠EPQ+∠OPE +∠POB=360°, 即∠PQD+∠OPQ+∠POB=360°…(8分) (3)存在符合条件的M点, 坐标为(-8,0),(2,0),(0,163),(0,?43). (答对一点得1分)…(12分)
最新精品学习资料,强烈推荐下载! 最新精品学习资料
5
共分享92篇相关文档