当前位置:首页 > 东南大学2012高等数学竞赛辅导题
竞赛辅导题
贺传富
?2x(?1)n一、求f(x)?arctan在x?0处的幂级数展开式,并计算S??之值 21?xn?02n?1解:背出arctanx的展开式,总是有用的
2x?2arctanx21?xx3x5arctanx?x???...352x32x5 f(x)?2x???...35收敛区间为(?1,1]f(x)?arctan(?1)n?S???arctan1=4n?02n?1?二、设xn?1?k?xn,k?1,x1?0.
1?xn1) 证明级数
??(xn?0?n?1?xn)绝对收敛;
2) 求级数
??xn?1n?1?xn?之和.
证明:首先猜测极限,然后得到这个解。其实,可以用归纳法,证明单调。然后迎刃而解。
xn?1?k?xn,k?1,x1?01?xn(xn?k)(1?k)1?xnxn?1?k?利用压缩映像原理知收敛,并且不难得到极限为k??xn?1?n?1?xn??k?x1k?xn,k?1,x1?01?xn2
xn?1?xn?k?xn2xn?xn?1?1?xn当n足够大的时候|xn?1?xnx?12|?|n|?|1?|?r?1xn?xn?11?xn1?xn从而得知其绝对收敛xn?1?k?xn,k?1,x1?01?xn(xn?k)(1?k)1?xn
xn?1?k?利用压缩映像原理知收敛,并且不难得到极限为k??xn?1?n?1?xn??k?x1三、设f(x)?C1?0,1?,f(0)?0,0?f?(x)?1,?x??0,1?,试证明对一切t??0,1?,成立
t?t?3??f(x)dx????f(x)?dx
0?0?2证明:原来想用Cauchy-Schwarz定理的,后来发现方向反了。尝试含参量的积分,成功
首先,?x?(0,1]f(x)?f(0)?f'(?)?0x?t?t3G(t)???f(x)dx????f(x)?dx?0?0?G?2f(t)?f(x)dx?f3(t)?2f(t)(?f(x)dx??f(x)f'(x)dx) ?t000tttt2?2f(t)?f(x)[1?f'(x)]dx?00G(t)?G(0)?0从而命题成立,似乎也仅仅在t?0的时候取到等号四、设g(x)?C2(??,??),g(0)?1,令
?g?(0),当x?0时? f(x)??g(x)?cosx,当x?0时?x?1) 讨论f(x)在x?0处的连续性;
. 2) 求f?(x),并讨论f?(x)在x?0处的连续性解:C2(??,??)应该是指二阶导函数连续吧,反复利用中值定理和
L’Hospital法则
1)f(0)?limg(x)?cosxg'(x)?sinx?lim?g'(0)x?0x?0x1g(x)?cosxg(x)?g(0)1?cosx或者f(0)?lim?lim?lim?g'(0)x?0x?0x?0xxx2)<1>当x?0时,f'(x)?(<2>当x?0时,g(x)?cosx?g'(0)g(x)?1?xg'(0)1?cosxxf'(0)?lim?lim?limx?0x?0x?0xx2x2g'(x)?g'(0)1g\?1?lim??x?02x22g'(x)?g'(0)?sinxg(x)?g(0)?xg'(0)1?cosxlimf'(x)?lim?lim?limx?0x?0x?0x?0xx2x2g'(x)?g'(0)1g\?1?lim?1????f\x?02x22
g(x)?cosxg'(x)?sinxg(x)?cosx)'??xxx2五
?21??1) 求极限:lim?x?2?ex???y?y?0???21??lim?x?2?ex???y?y?0??0??x?y?e221yx?1y 解:这道题目ex总是比x大无穷阶,猜出答案来解决
x??lim?x2?y2?e?x???y???x?y?x?y?x2?y2ex?y?(x?y)2ex?yx???y???lim(x?y)2ex?yx4?limx?0x???ex?1y;
?21???lim?x?2?ex???y?y?0??
?0b2) 设f(x)?C?A,B?,A?a?b?B,试求limh?0?af(x?h)?f(x)dx
h解:lim不能穿越积分符号,但是f(x)可积,所以分开来积分再合起来
f(x)?C?A,B?,A?a?b?B,所以f(x)在[a,b]可积x?f(x)dx?F(x)ab?af(x?h)?f(x)F(b?h)?F(a?h)?F(b)?F(a)dx?hhb
lim?h?0af(x?h)?f(x)F(b?h)?F(b)F(a?h)?F(a)dx?lim?limh?0h?0hhh?f(b)?f(a)3)lim1r?0?r2x2?y2?2r2xy2ecos(x?y)dxdy. ??2解:这几道题目的做法都相似,主要就是放缩和夹逼定理,运用熟练以
后非常方便。
1?r21?ex2?y2?2r2??exycos(x2?y)dxdy2???0,?r',r?r'xy2?e?1??22r21?cos(x?y)?cos(2r)?1??1xy2????2??ecos(x2?y)dxdy?1???rx2?y2?2r2所以,利用夹逼定理,原式的极限为14)lim?1?n???x2
??1??x??e. x?1xe?(1?x)
x?0xx?xn?1,n?2,3,?,求limxn (6)设x0?a,x1?b,xn?n?2n??2(5)求极限limn(nn?1)(n??) (7)求极限Limlnn(8)计算
limx??031?3x4?1?2x31?x?1?x2
解:L’Hospital法则得
1?143?23(1?3x)?12x?(1?2x)13???6. 2111??11?(1?x)3?(1?x)23232原式=
limx?0
共分享92篇相关文档