当前位置:首页 > 南开大学生物化学重点及《现代生物化学》第二版课后答案
也称为β弯曲,β回折,发夹结构,U型转折等。蛋白质分子的多肽链在形成空间构象时,经常会出现180的回折(转折),回折处的结构就称为β转角结构。一般有四个连续的氨基酸组成。在构成该种结构的四个氨基酸残基中,第一个氨基酸的验基和第四个氨基酸的氨基之间形成氢键。甘氨酸和脯氨酸易出现在这种结构中;在某些蛋白质,如嗜热菌蛋白酶中有三个连续的氨基酸形成的β转角结构。氢键形成于第一个氨基酸磷基氧和第三个氨基酸亚氨基的氢之间。 13.
l)蛋白质的变性作用:蛋白质因受某些物理的或化学的因素的影响,分子的空间构象破坏,从而导致其理化性质,生物学活性改变的现象称为蛋白质的变性作用。强酸,强碱,剧烈搅拌,重金属盐类,有机溶剂,脉,肌类,超声波等都可使蛋白质变性。 2)蛋白质的沉淀作用:由于水化层和双电层的存在,蛋白质溶液是一种稳定的胶体溶液。如果向蛋白质溶液中加入某种电解质,以破坏其颗粒表面的双电层或调节溶液的pH,使其达到等电点,蛋白质颗粒因失去电荷变得不稳定而将沉淀析出。这种由于受到某些因素的影响,蛋白质从溶液中析出的作用称为蛋白质的沉淀作用。
如重金属盐类、有机溶剂、生物碱试剂等都可使蛋白质发生沉淀,且不能用透析等方法除去沉淀剂而使蛋白质重新溶解于原来的溶剂中,这种沉淀作用称为不可逆的沉淀作用。如果向蛋白质溶液中加入大量的盐类,如硫酸铰,蛋白质的溶解度逐渐下降,以致从溶液中沉淀出来,若用透析等方法除去使蛋白质沉淀的因素后,可使蛋白质恢复原来的溶解状态。此种沉淀作用称为可逆的沉淀作用。
沉淀的蛋白质不一定变性失活,但变性后的蛋白质一般失去活性。 14.小肽。
15.在有机酸如TCA、磺基水杨酸等存在下,绝大多数蛋白质带正电荷;可与酸根负离子形成不溶性复合物而沉淀析出,在临床上,预分析血液中的游离氨基酸的量,向血液中加入 TCA,使蛋白质沉淀,离心取上清液即可用于氨基酸的分析。
有机溶剂如丙酮、乙醇等,可使蛋白质沉淀。因有机溶剂使蛋白质脱水,介电常数降低。应用:制备有活性的酶或蛋白质性质的激素等常用丙酮将材料制成于粉以便于保存;用乙醇抽提制备某些醇溶性蛋白。
SDS:十二烷基硫酸钠,是一种阴离子去污剂,表面带大量的负电荷。可与蛋白质的疏水性基团结合使蛋白质变性。蛋白质分子愈大,结合的SDS量愈多;负电性愈大。因而在电场中的迁移速度不同。SDS-PAGE电泳法测定蛋白质的分子量即根据此原理。在核酸制备中用SDS破坏膜结构,除蛋白、核酸酶等。
盐类:在低盐溶液中,大多数蛋白质的溶解度增加;在高盐溶液中,由于蛋白质分子表面的电荷被中和,破坏了双电层,蛋白质将沉淀析出。不同蛋白质氨基酸组成不同,在不同盐浓度的溶液中溶解行为不同,可用盐析法沉淀蛋白质。
o
重金属盐类:在碱性条件下,蛋白质带负电,可与重金属离子如汞离子,铅离子结合,形成不溶性的重金属蛋白盐沉淀。因此,长期从事重金属作业的人,应吃高蛋白食物,以防止重金属离子被机体吸收。临床上,常用醋酸铅或硫酸铜沉淀体液中的蛋白质,以分析体液中的氨基酸或其他小分子化合物。
生物碱是植物组织中具有显著生理作用的一类含氮的碱性物质。能够沉淀生物碱的试剂称为生物碱试剂。如单宁酸、苦味酸、三氯乙酸等都能沉淀生物碱,故称它们为生物碱试剂。在酸性条件下,蛋白质带正电荷,可与生物碱试剂,如三氯乙酸的酸根离子结合成为溶解度较小的盐类而沉淀。
“柿石症” 的产生就是由于空腹吃了大量的柿子,柿子中含有单宁酸,使肠胃中的蛋白质凝固变性而成为不能被消化的“柿石”。
16.·血红蛋白有两条a链和两条β链组成。血红蛋白的a链和β链与肌红蛋白的构象十分相似,尤其是β链。它们所含的氨基酸种类、数目、氨基酸的排列顺序都有较大的差异,但它们的三级结构十分相似。使它们都具有基本的氧合功能。但血红蛋白是一个四聚体,它的分子结构要比肌红蛋白复杂得多;因此除了运输氧以外,还有肌红蛋白所没有的功能。如运输质子和二氧化碳。
血红蛋白的氧合曲线为S形,而肌红蛋白的氧合曲线为双曲线,S形曲线说明血红蛋白与氧的结合具有协同性。
脱氧血红蛋白分子中,它的四条多肽链的C端都参与了盐桥的形成。由于多个盐桥的存在,使它处于受约束的强制状态。当一个氧分子冲破了某种阻力和血红蛋白的一个亚基结合后,这些盐桥被打断,使得亚基的构象发生改变,从而引起邻近亚基的构象也发生改变,这种构象的变化就更易于和氧的结合;并继续影响第三个、第四个亚基与氧的结合,故表现出S型的氧合曲线。
17.在无水肼存在下,除C端氨基酸外,其他氨基酸均转变为氨基酸酸肼的衍生物,加入苯甲醛,后者又转变为二苯基衍生物,不溶于水。经离心分离,C一端氨基酸在水相,向水相中加入2,4一二硝基氟苯与其反应,可得到相应的2,4一二硝基苯氨基酸,经色谱分析可鉴定之。
18.蛋白质的一级结构决定其高级结构。核糖核酸酶,一条肽链经不规则折叠而形成一个近似于球形的分子。构象的稳定除了氢键等非共价键外,还有4个二硫键。C.Anfinsen发现,在8mol脲素和少量流基乙醇存在下,酶分子中的二硫键全部还原,酶的三维结构破坏,活性丧失。当用透析方法慢慢除去变性剂和疏基乙醇后,发现酶的大部分活性恢复;因为二硫键重新形成。这说明完全伸展的多肽链能自动折叠成其活性形式;若将还原后的核糖核酸酶在8mol脲素中重新氧化,产物只有1%的活性,因为硫氨基没有正确的配对。变性核糖核酸酶的8个硫氢基相互配对形成二硫键的几率是随机的
(1/7X1/5X1/3=1/105种可能的配对方式,但只有一种是正确的),实验发现,复性过程中 RNase接与天然RNase相同的连接方式形成二硫键,这是由于蛋白质的高级结构,包括二硫键的形成都是由一级结构决定的。
以上实验说明,蛋白质的变性是可逆的,变性蛋白在一定的条件下之所以能自动折叠成天然的构象,是由于形成复杂的三维结构所需要的全部信息都包含在它的氨基酸排列顺序上,蛋白质分子多肽链的氨基酸排列顺序包含了自动形成正确的空间构象所需要的全部信息,即一级结构决定其高级结构。由于蛋白质特定的高级结构的形成,出现了它特有的生物活性。 19.
1)等电点沉淀法,蛋白质是两性化合物,在等电点时其溶解度最小。不同蛋白质氨基酸组成不同,等电点不同,调节蛋白质混合溶液的pH值,可使他们分次沉淀出。 2)离子交换纤维素层析,常用的纤维素衍生物有CM一纤维素(分子中带有羧甲基基团,一0一CH2一C00H)和DEAE-纤维素(阴离子交换剂,带有二乙氨基乙基基团)。 蛋白质与离子交换纤维素的结合能力取决于彼此间相反电荷基团的静电吸引,在某一pH条件下,不同蛋白质氨基酸组成不同,pI不同,所带的静电荷性质、数量不同,与离子交换纤维素的吸附能力不同。通过改变洗脱液的pH和离子强度,可把不同的蛋白质依次洗脱下来。
3)电泳法(聚丙烯酞胺凝胶电泳、等电聚焦)。 20.Phe-Met-Lys-Gln-Lys-Pro。
21.因细菌含有胶原酶,该酶专一性水解动物的结缔组织,因结缔组织中的主要蛋白质是胶原蛋白,其一级结构中存在一X-Gly-Pro-Y一顺序,允许细菌入侵宿主细胞,而细菌本身无胶原蛋白。 22.
1)赖氨酸或精氨酸取代了正常血红蛋白β链的第六位谷氨酸。导致用胰蛋白酶水解时产生了只有6个氨基酸组成的肽段。
2)在pH8.0时,血红蛋白都带负电荷,应向正极移动。由于异常血红蛋白分子中的第六位变成了一个碱性氨基酸(HbA第六位是 Glu,HbS第六位是 Val);因此,在 pH8时,HbA所带的净电荷数最多,HbS次之,异常Hb所带的净电荷数最少,向正极移动的速度为: 异常血红蛋白 < HbS < HbA 23.
1)在a螺旋结构中,每一个氨基酸残基的高度为0.15nrn,所以
4.5/0.15=30个 AA
2)30(因每一螺旋要跨膜至少应含30个氨基酸残基)X 7=210个AA, 从其分子量知共含 26 000/110=236个 AA残基,所以 210/236=89(%)。
24.Ser一Lys一Cys一Phe一Ala
26.因原肌球蛋白为棒状结构,血红蛋白为球状,后者在超速离心场中所受到的摩擦阻力小。 27.
1)柠檬酸合成酶主要存在于线粒体,差速离心法可使线粒体与其他细胞器相互分离。 2)第一次加硫酸铵后离心要上清液,是为了除去杂蛋白;向上清液中再加入硫酸铵,离心要沉淀,因CS在沉淀部分。
3)透析是为了除去硫酸铵,为获得天然构象的CS,用pH7.2的缓冲液透析而不能用水。
4)在分离的样品中,CS分子量最大,故首先被洗出;大多数蛋白质含有色和酪氨酸,在280um下有吸收,故常用此波长检测。
5)说明CS带正电荷,改用高pH缓冲液洗脱,使CS所带电荷的性质改变,易于从阳离子交换柱上被洗脱下来。 28.
1)因为二硫键是共价键,这使许多蛋白质结构稳定的基础。因为二硫键使蛋白质多肽链之间形成共价交联,增加了蛋白质的抗张强度、硬度等。如谷蛋白是一种富含二硫键的蛋白质,小麦面团的黏性、弹性即是由于二硫键的存在。乌龟外壳坚硬,是由于它的a角蛋白中大量二硫键的存在。
2)二硫键可防止蛋白质多肽链在不利条件下转变为完全伸展的状态。故在适宜的条件下构象可恢复。
29.是由于疏水基团为避开水相而相互靠近。蛋白质分子中有许多疏水的氨基酸,蛋白质的多肽链在盘绕折叠形成特定的构象时,这些疏水侧链相互靠近趋向于分子内部以减少其与水的界面,这是蛋白质空间构象形成的驱动力之一,称为疏水力或称为疏水的相互作用。 1959年,Kauzmann从热力学的角度对疏水的相互作用进行了分析研究后指出,非极性化合物从水中转移到有机溶剂中时,伴随着熵的增加。设想两个疏水基团原来和水接触,经过变化,两个疏水基团相互接触,除了它们自身的吸引力外,还有将它周围一部分排列整齐的水分子排入自由的水中,使水分子的混乱度增加;由于熵是体系混乱度的衡量,体系越混乱,其熵越大。因此两个疏水基团的相互吸引将伴随着熵的增大。反过来说,由于熵增是自发过程,是一个使体系能量趋于极小即能量上有利的过程,所以疏水的相互作用是熵所驱动的。非极性溶剂、去污剂等可破坏疏水的相互作用,因此是蛋白质变性剂。 30.研究发现,当BPG不存在时,血红蛋白与氧的亲和力强;BPG与血红蛋白结合后可极大地降低血红蛋白对氧的亲和力,降低的程度依赖于 BPG/Hb的比值。BPG存在于人的红细胞中,与血红蛋白的摩尔分数相同,是红细胞内糖在无氧或暂时缺氧情况下分解代谢的
共分享92篇相关文档