当前位置:首页 > 九年级概率复习课导学案
第二十五章:概率初步
1、随机事件、确定性事件
例1、下列事件中,是必然事件的是( )
A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落 D.掷两枚质地均匀的骰子,点数之和一定大于6 变式训练
(1)下列成语所描述的事件是必然事件的是( )
A 水中捞月 B拔苗助长 C守株待兔 D瓮中捉鳖 (2)下列事件是确定事件的是( )
A太平洋中的水常年不干 B男生比女生高 C计算机随机产生的两位数是偶数 D星期天是晴天
2、对概率意义的理解
例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机
会获胜”意思最接近的是( )
A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场比赛.
D.若这两个队打100场比赛,他这个队可能会赢60场左右. 变式训练:气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( ) A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水 C.明天肯定下雨 D.明天降水的可能性比较大
3、直接列举求简单事件的概率
例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是 。
4、列表法和画树形图法求简单事件的概率.
例4、有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)如图所
示散乱地放在桌子上。
(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率。
(2)若从计算器和保护盖中随机取两个,用树状图或列表法,求恰好匹配的概率。
例5、从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少
5、利用频率值估计概率值
例6.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约为 。
变式训练:在如图中,现在玩投石子游戏,如果随机掷中长方形的480次中,有160次是落在黄色区域内. (1)你能计算出掷中黄色区域的概率吗?
(2)若该长方形的面积为150,黄色区域的面积应是多少?
黄红黄
红 黄
黄红 红
概率初步练习
一、选择题
1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).
A.让比赛更富有情趣 B.让比赛更具有神秘色彩 C.体现比赛的公平性 D.让比赛更有挑战性
2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A.0 B.1 C.0.5 D.不能确定 3.关于频率与概率的关系,下列说法正确的是( ).
A.频率等于概率 B.当试验次数很多时,频率会稳定在概率附近 C.当试验次数很多时,概率会稳定在频率附近D.试验得到的频率与概率不可能相等 4.下列说法正确的是( ).
A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001
次一定抛掷出5点
B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖 C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨 D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).
A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1 B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了
作业
C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以
从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)
D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一
次出现反面
6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是 。
7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m、100m、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是 。
8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为 .
9.下面4个说法中,正确的个数为( ).A.3 B.2 C.1 D.0 (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率
已经很大
(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200% (4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 10.下列说法正确的是( ).
A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生 C.可能性很小的事件在一次试验中有可能发生 D.不可能事件在一次试验中也可能发生 二、填空题 11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅
匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_________________. 12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______.
13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,
记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)=______,P(B)=______,P(C)=______.
14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的
一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.
15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴
对称图形又是中心对称图形的概率为______.
16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.
17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则
摸到红球的概率是______.
18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.
若从中随机摸出一个球,它是白球的概率为
23,则n=______. 三、解答题
19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下: (1)计算表中各个频率;
(2)读者对该杂志满意的概率
被调查人数n 1001 1000 1004 1003 1000 约是多少?
满意人数m 999 998 1002 1002 1000 (3)从中你能说明频率与概率满意频率m 的关系吗?
n
20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将
盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据: 摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率mn 0.65 0.62 0.593 0.604 0.601 0.599 0.601 (1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1) (2)假如摸一次,你到白球的概率P(白球)=______; (3)试估算盒子里黑、白两种颜色的球各有多少只?
共分享92篇相关文档