当前位置:首页 > (优辅资源)东北三省四市高三高考第一次模拟考试数学(理)试题Word版含答案
优质文档
∴在x?R上,f'(x)?2x?4?a?0恒成立, ex即:a?(4?2x)e,
x所以设h(x)?(4?2x)e,x?R,
x∴h'(x)?(2?2x)e,
x∴当x?(??,1)时,h'(x)?0,∴h(x)在x?(??,1)上为增函数,
∴当x?[1,??)时,h'(x)?0,∴h(x)在x?[1,??)上为减函数,
x?(4?2x)e∴h(x)max?h(1)?2e,∵a????max,
∴a?2e,即a?[2e,??).
(2)∵g(x)?ef(x)?(x?4x?5)e?a,
x2x∵g(x1)?g(x2)?2g(m),m?[1,??),
222m∴(x1?4x1?5)e1?a?(x2?4x2?5)e2?a?2(m?4m?5)e?2a,
xx22∴(x1?4x1?5)e1?(x2?4x2?5)exx2?2(m2?4m?5)em,
∴设?(x)?(x?4x?5)e,x?R,则?(x1)??(x2)?2?(m),
2x2x∴?'(x)?(x?1)e?0,∴?(x)在x?R上递增,
∴设F(x)??(m?x)??(m?x),x?(0,??),
∴F'(x)?(m?x?1)e2m?x?(m?x?1)2em?x,
优质文档
优质文档
∵x?0,
∴em?x?em?x?0,(m?x?1)2?(m?x?1)2?(2m?2)2x?0,
∴F'(x)?0,F(x)在x?(0,??)上递增,
∴F(x)?F(0)?2?(m),
∴?(m?x)??(m?x)?2?(m),x?(0,??),
令x?m?x1,
∴?(m?m?x1)??(m?m?x1)?2?(m),即?(2m?x1)??(x1)?2?(m), 又∵?(x1)??(x2)?2?(m),
∴?(2m?x1)?2?(m)??(x2)?2?(m),即?(2m?x1)??(x2), ∵?(x)在x?R上递增,
∴2m?x1?x2,即x1?x2?2m得证.
??cos??3,3cos???22.解:(1)联立?,
2??4cos?,?∵0????2,???6,??23,
∴所求交点的极坐标(23,?6).
(2)设P(?,?),Q(?0,?0)且?0?4cos?0,?0?[0,?2),
优质文档
优质文档
2????,2?0OQ?QP由已知,得?5 3???0??,2???4cos?,点P的极坐标方程为??10cos?,??[0,). 52∴??4x?1,x?0,??323.解:(1)当m??2时,f(x)?|2x|?|2x?3|?2??1,??x?0, 2?3??4x?5,x??.??2?4x?1?3,13当?解得0?x?;当??x?0,1?3恒成立;
22?x?0,??4x?5?3,3??2?x??当?解得, 3x??,2??2??1??. 2?此不等式的解集为?x|?2?x?23??x??3?m,??x?0,2??x2(2)令g(x)?f(x)?x??? 23x??5x??m?3,x??,?x2?32?x?0时,g'(x)??1?2,当?2?x?0时,g'(x)?0,所以g(x)在[?2,0)2x当?上单调递增,当?33?x??2时,g'(x)?0,所以g(x)在[?,?2)上单调递减, 22所以g(x)min?g(?2)?22?3?m?0,
所以m??22?3,
优质文档
优质文档
当x??323时,g'(x)??5?2?0,所以g(x)在(??,?]上单调递减, 2x23235?0, 6所以g(x)min?g(?)?m?所以m??35, 6综上,m??22?3.
优质文档
共分享92篇相关文档