当前位置:首页 > SPE-173326-MS
SPE-173326-MS5
Figure5—FracturelengthdistributioninFigure4.
wheren(l)dlisthenumberofnaturalfracturestaneously.havingalengthintherange[l,l?dl],?isacoef-Injectionrate60bpm
ficientofproportionality,andaisanexponentvary-Lengthofastage300ftLayerheight100ftingbetween1and3.AsshowninFigure1,the
Minimumhorizontalstress4450psiprobabilitytointroducelargefracturesismuch
FluidLeak-offCoefficient0.00001ft/min0.5smallerthanthatofhavingsmallfractures.TheViscosity1cprelativeabundanceofsmallversuslargefracturesisYoung’sModulus6.53?106psiinverselyproportionaltothemagnitudeoftheex-Poisson’sRatio0.2No.ofPerforations60ponenta(Figure3).Foragivensetofnatural
DensityofSlurry1.2g/cm3fractures,orientationsareroughlythesame.Inthe
DiameterofPerforations16mm
Barnettshale,thedominanttrendofnaturalfrac-DiameterofWellbore0.1m
turesiswest-northwest,andothersetstrendnorth-Proppant40/70MeshProppantdiameter0.0124inchsouth(Gale,etal.,2007).Toinvestigatethesensi-So0psitivityofthecreatedgeometryoffracturenetworks,
To900psi
wegeneratedasinglesetofverticalnaturalfrac-?0.6
tureswithastrikeorientationof45oina1000ft?1000ftsquarereservoirofsize(Figure4).Fracturespacingwasvariedfromrandom(Figure4a)to
regular(Figure4b).Bothtwopatternswerecreatedusingexponentofpowerlawa?2(Figure5).Inourcurrentmodel,itisassumedthatonceahydraulicfracturedivertedalongthepre-existingpathofanaturalfracture,thehydraulicfracturemustpropagatetotheendofthenaturalfracturebeforekickingintothematrix.Besides,naturalfracturesarepotentialdistributedinthereservoir.Deformationofnaturalfracturesisnotcalculateduntilintersectedbyhydraulicfracturesinthemodel.Inotherwords,thenaturalfracturescannotaffectthehydraulicfracturepropagation,beforehydraulicfracturesintersectingnaturalfractures.Thecomputationalefficiencyofthemodelisnotincreasedafterincludingnaturalfractures.
Table1—Inputparametersformultiplefracturespropagatingsimul-
Sensitivityanalysisofcomplexfracturenetworks
Aseriesofsimulationswasperformedusingourfracturepropagationmodeltoillustratetheimpactofperforationclusterspacinganddifferentialstress(DS?SHmax-Shmin)onfracturegeometryandinjectionpressureinthenaturallyfracturedreservoirs.Theparameters(Table1)areprescribedbasedonthepublisheddataforshalereservoirs.Fractureheightisconstantandequaltothethicknessofthereservoir
6SPE-173326-MS
Figure6—Effectivefracturelengthdistributionandtotaleffectivefracturelengthforfourcaseswithdifferentperforationclusterspacing(slickwater,60bpm,DS?100psi,relativeanglebetweenNFandHF?45o,a?2,NFspacing?55ft).
formation.Hence,fracturesurfaceareaisdependentontheeffectivelengthofhydraulicfractures.Theeffectivefracturelengthisdeterminedbyproppanttransportinthecomplexfracturenetworkswhichisrelativetoproppantdiameter.Cipollaetal.(2011)statedthattheeffectivelengthisfracturelengthwithapertureof2.5timesgreaterthantheaverageproppantdiameter,whichcanallowproppanttoenterafracture.
Theeffectsofperforationclusterspacing
Perforationclusterspacingisaveryimportantfactorthatcanbeoptimizedtomaximumoil/gasproduction.Theclusterspacingaffectsoil/gasproduction,intwoways-pressureinterferencefromproductionandfractureinteractionbetweenmultiplefractures(YuandSepehrnoori,2014;Yu,etal.,2014).Wesolelyfocusonstudyingthefractureinteraction.Thestressshadoweffectsofsimultaneousmultiplefracturescanresultinunevenfracturegrowth(Olson,2008;RousselandSharma,2011;WuandOlson,2013).Furthermore,naturalfracturesalsoaffectfracturegrowthandmightgeneratecomplexfracturenetworks(OlsonandDahi-Taleghani,2009;Dahi-TaleghaniandOlson,2009;Kresseetal.,2013;WuandOlson,2014(a)).Thegoalofstimulationdesignsistoexposeasmuchfracturesurfaceareaaspossibleattheleastamountofcost,becauseitisbelievedthatdrainageareaisdirectlyrelatedtothesurfacearea.
ThetotaleffectivefracturelengthforfourcaseswithdifferentperforationclusterspacingisasshowninFigure6forastagewithalengthof300ft.Changingthteperforationclusternumberfrom3to6changesclusterspacingfrom150ftto60ft.Perviousworkonstressshadows(WuandOlson,2013)suggeststhatwhenfractureshaveaspacingequaltoorlessthantheirheight,fracturewidthwillbehinderedintheinteriorfracturesofamulti-clusterstage.ThewidestspacingcaseinFigure4(S/H?1.5)wouldconsequentlybeconsideredamildinteractioncase,andthe6fracturecasewouldbestrong(S/H?0.6).Withdecreasingperforationclusterspacing,thevariabilityofgrowthbetweenthefracturesofagivenstageincreases.Inthestronginteractioncase,theexteriorfractureshavelongereffectivelengthsthantheinteriorones.Thelargerthenumberoffractures,themoreuneveneffectivefracturelengthdistribution.Theresultsalsoshowthatincreasingthenumberofperforationclustersinfixedlengthstage
SPE-173326-MS7
Figure7—Widthprofileoffracturenetworks(leftside)andthechangeofthemaximumshearstresswithhypotheticalmicroseismiceventpatterns(rightside)attheendofinjectionforfourcaseswithdifferentperforationclusterspacing(slickwater,60bpm,DS?100psi,relativeanglebetweenNFandHF?45o,a?2,NFspacing?55ft,‘*’:microseismicactivity).
doesnotnecessarilyresultinincreasedtotalfracturelength.Fortherangeofinputexamined,themaximumtotalfracturelengthwasforthecaseof4fractures.Thegreatestpenetrationawayfromthewellbore,however,wasachievedfortheclosestspacedcasewhichhadthestrongestmechanicalinteraction.Only2ofthe6fracturesgrew,allowingthemtopenetratefurthestawayfromthewellbore.Figure7showsfracturewidthprofilesattheendofinjectionforeachcase.Thegreylinesrepresentnaturalfracturesandlineswithdifferentcolorsrepresentthehydraulicfracturewidthdistribution.Fracturewidthprofilesofthefourcasesillustratethatnearthewellbore,fracturesurfaceareaforcaseswithsmallclusterspacing(e.g.thecasewith6fractures)ismuchlargerthanthatforcaseswithlargeclusterspacing(e.g.thecasewith3fractures).Awayfromthewellbore,however,thecaseswithsmallclusterspacinghavesomewhatlesssurfaceareaandsmallerwidth.Thismightimplyahorizontalwellwithsmallclusterspacingcouldhavehighproductionratesattheearlytime,butdeclinerapidlyduringthelatetime(Khan,2013).
Theeffectsoftheremotedifferentialstress
Remotedifferentialstressalsohasagreatimpactoninjectionpressureandfracturecomplexity.Figure2indicatesthatthecrossingconditionisaffectedbythein-situstressesratio.Generally,theratioisgreater
8SPE-173326-MS
Figure8—Variationsofthenetinjectionpressureattheheelofhorizontalwellboreforthreecaseswithdifferentdifferentialstresses(clusterspacing?100ft,slickwater,60bpm,relativeanglebetweenNFandHF?45o,a?2,NFspacing?55ft).
Figure9—Effectiveandtotalfracturelengthoffourfracturesforthreecaseswithdifferentdifferentialstresses(clusterspacing?100ft,slickwater,60bpm,relativeanglebetweenNFandHF?45o,a?2,NFspacing?55ft).
than1andlessthan2.Whentherelativeangleofthehydraulicandnaturalfractureis45oandfrictioncoefficientis0.6,itisevidentfromthefigurethatthehydraulicfracturescannotcrossthenaturalfracturesforanydifferentialstresses.Furthermore,non-zerotensilestrengthofrockmakesthehydraulicfracturesevenhardtocrossthenaturalfractures.Therefore,inthiscasehydraulicfractureswillnotcrossnaturalfracturesforthreedistinctdifferentialstresses(0psi,100psi,300psi).Whenahydraulicfracturegrowsalongamisaligneddirection,additionalstresseswillactonthehydraulicfracture.Thelargerdifferentialstressimpliesthehigheradditionalstresses.Figure8showsnetinjectionpressureatthewellborewithtimeandillustratesthatthenetpressureincreaseswithincreasingdifferentialstress.Inaddition,thenetpressureofthecaseswithdifferentdifferentialstressesexhibitsdistictmagnitudesofpressurechangeasintersectingwithnaturalfractures,emphasizingthatnetpressuretrendmightbeabletoaidincharacter-izingcomplexfracturegeometry.
TotalfracturelengthandeffectivelengthareshowninFigure9,illustratingthatfracturegrowthis
共分享92篇相关文档