当前位置:首页 > 2019-2020中考数学一模试卷(带答案)
(1)求抛物线的解析式;
(2)点D是抛物线上一点,连接BD、CD,满足S?DBC?3SVABC,求点D的坐标; 5(3)点E在线段AB上(与A、B不重合),点F在线段BC上(与B、C不重合),是否存在以C、E、F为顶点的三角形与△ABC相似,若存在,请直接写出点F的坐标,若不存在,请说明理由.
24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?
25.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】
试题分析:A.﹣2<﹣1,故正确; B.0>﹣1,故本选项错误; C.1>﹣1,故本选项错误; D.2>﹣1,故本选项错误; 故选A.
考点:有理数大小比较.
2.A
解析:A 【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A. 考点:由三视图判定几何体.
3.C
解析:C 【解析】 【分析】
10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把科学记数法的表示形式为a×
原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【详解】
460 000 000=4.6×108. 故选C. 【点睛】
10n的形式,其中1≤|a|<此题考查科学记数法的表示方法.科学记数法的表示形式为a×10,n为整数,表示时关键要正确确定a的值以及n的值.
4.C
解析:C 【解析】 【分析】
x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】
x=0时,两个函数的函数值y=b,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误; 由A、C选项可知,抛物线开口方向向上, 所以,a>0,
所以,一次函数y=ax+b经过第一三象限, 所以,A选项错误,C选项正确. 故选C.
5.D
解析:D 【解析】 【分析】
连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可. 【详解】 连接OC、OA,
∵∠ABC=30°, ∴∠AOC=60°,
∵AB为弦,点C为?AB的中点, ∴OC⊥AB, 在Rt△OAE中,AE=∴AB=53, 故选D. 【点睛】
此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.
53, 26.C
解析:C 【解析】
试题分析:当x=1时,a+b+c=0,因此可知二次方程ax2+bx+c=0的一个实数根,故①正确;根据a>b>c,且a+b+c=0,可知a>0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x=-
b,可知无法判断对称轴的位置,故③不正确; 2a根据其图像开口向上,且当x=2时,4a+2b+c>a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.
7.B
解析:B 【解析】 【分析】
根据相反数的性质可得结果. 【详解】
因为-2+2=0,所以﹣2的相反数是2, 故选B. 【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
8.A
解析:A 【解析】
分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D. 详解:当y=7.5时,7.5=4x﹣整理得x2﹣8x+15=0, 解得,x1=3,x2=5,
∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意; y=4x﹣=﹣
12x, 212x 21(x﹣4)2+8, 2则抛物线的对称轴为x=4,
∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;
12?y??x?4x??2, ?1?y?x?2?
共分享92篇相关文档