云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版五年级数学下册概念重新整理(详细讲解分数应用题解法)

北师大版五年级数学下册概念重新整理(详细讲解分数应用题解法)

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 16:59:14

列西托管中心整理

北师大版五年级数学下册概念与公式整理版

一、分数乘法、分数除法

1. 分数乘法的意义:求几个相同分数的和的简便运算

2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算。 如:25÷5=? 已知两个乘数(因数)的积是25,其中的一个因数是5,求另一因数是多少? 3. 分数乘法的运算法则:

1)分数与整数相乘:分子和整数相乘,分母不变;

2)分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。 4. 分数除法的运算法则:

1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数; 2)一个数除以一个分数等于这个数乘以这个分数的倒数; 3)除以一个数(0除外)等于乘这个数的倒数; 4)当除数<1时,商大于被除数;(商就是得数) 5)当除数=1时,商等于被除数; 6)当除数>1时,商小于被除数。

5. 分数除法的意义:如果两个数的乘积是1,那么这两个数叫做互为倒数,其中一个数叫做另一个数的倒数。

6. 注意:1的倒数是1,而0没有倒数。

7. 分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

111如:×5表示求5个的和是多少,或者表示的5倍是多少。

2228. 一个数乘分数的意义:就是求这个数的几分之几是多少。

1111如:4×表示求4的是多少。 3×表示3的是多少。

33339. 分数乘、除法的实际问题

1)求一个数的几分之几是多少,用乘法。

2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。 10. 原价×折扣=现价;现价÷原价=折扣;现价÷折扣=原价。 11. 找单位“1”的方法: ①总数量是单位“1”;

1例如:小红看完整本书的,那么单位“1”是整本书的页码。

2②原价就是单位“1”;

1例如:笔记本电脑原价是3000元,现在降价了,那么单位“1”是原价3000元。

2③分数比率之前的“的”字前面的量是单位“1”;

1例如:全校男生的人数是女生人数的,那么单位“1”是女生人数。

2④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”。

1例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。

2总结:单位“1”在总数、原价、的前面、比后面。

以上内容请同学们务必多理解、多运用!! 第1页

列西托管中心整理

12. 分数应用题的解题方法:(分率就是几分之几) ? 题型1:商店卖出的苹果6千克,卖出的苹果比橘子多

1,求卖出橘子多少千克? 2【解题思路】

第一步:找单位“1”

该题中:单位“1”是“比”字后面的东西——橘子数量。

第二步:判断单位“1”已知还是未知?已知用乘,未知用除。

如果单位“1”已知,就用乘法解,用单位“1”的量乘以谁的分率就算谁的具体量。

如果单位“1”未知,说明题目是求单位“1”的量。要用除法或者列X方程计算单位“1”的量,用已知量除以它对应的分率。

该题中:单位“1”橘子数量未知,是题目要求出的数量,用除法,把已知量苹果作为被除数。

第三步:某物比单位“1”多几分之几就写:(1+分数),;

某物比单位“1”少几分之几就写:(1-分数),或说减少了几分之几。

11该题中:苹果比橘子多,也就是苹果是橘子的(1?),根据前一步所得的被除

221数是苹果数量6千克,因此最后列式为:6?(1?)?4 。

2?1?苹果比橘子增加了2??1?1?注意:苹果比橘子多等同于?苹果是橘子的?1+?

22?????1?苹果增加到橘子的??1+??2??同学们可以用具体数字带进去理解,例如:苹果为3千克,橘子为2千克。

? 题型2:商店卖出苹果6千克,卖出橘子4千克,问卖出的苹果是橘子的几分之几?

【解题思路】

第一步:求分率的应用题,我们同样要找单位“1”。

该题问卖出的苹果是橘子的几分之几?单位“1”是橘子。

第二步:单位“1”的量做除数,求谁的分率就用谁的具体量除以单位“1”的量。

该题单位“1”是橘子,因此橘子做除数,苹果做被除数来除以单位“1”,因此

3最终得出:6?4?。

2? 题型3:求平均数的应用题,求谁的量就把谁做除数。

例:一堆煤,5天烧了10吨,求平均每天烧多少吨?

求每天,天就作为除数,把5天做除数,即10÷5=2(吨); 例:一堆煤,5天烧了10吨,求平均每吨烧多少天?

求每吨,吨就做除数,即5÷10=0.5(天)。 注意:得数的单位应该与被除数的单位一致。 13. 分数应用题如何列式:

以上内容请同学们务必多理解、多运用!! 第2页

列西托管中心整理

用乘法的情况如下 知道单位“1”时 知道总数求部分的公式: 总数 × 对应的分数 = 部分 题目形式 用除法的情况如下 不知道单位“1”时 知道部分求总数的公式: 知道的部分 ÷ 对应的分数 = 总数 题目形式 已知一个数,求这个数的几分之几是多少。 已知一个数的几分之几数多少,求这个数 已知一个数,求这个数的百分之几数多少。 已知一个数的百分之几数多少,求这个数 注意:以上11、12、13项请结合题目理解!!!

二、分数的混合运算

1. 分数混合运算的顺序和整数混合运算的顺序相同,都是先算乘除法,再算加减法,有括号的先算括号里面的,再算括号外面的。【整数的运算律在分数运算中同样适用】 2. 运算定律:

1)乘法分配律:a?(b?c)?a?b?a?c←(请特别注意这个公式!) 2)乘法结合律:a?b?c?a?(b?c) 3)乘法交换律:a?b?b?a

运用运算定律可对分数的混合运算进行简便运算。

3. 分数与整数相乘,分母不变,分子和整数相乘的积作分子。

分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的先约分。 4. 一个数乘一个真分数,所得的积一定小于原来的数; 一个数乘一个等于1的数,所得的积等于原来的数;

一个数乘一个大于1的假分数,所得积一定大于原来的数。

三、长方体的认识、表面积、体积和容积

1. 两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高

2. 长方体有6个面,每个面一般都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等。有12条棱,12条棱可以分为三组:4条长,4条宽,4条高,长、宽、高分别相等。有8个顶点,每个顶点处由3条棱组成,长、宽、高各一条。

3. 正方体有6个面,每个面都相等,都是正方形。有12条棱,12条棱长度相等,叫做正方体的棱长。有8个顶点。正方体是特殊的长方体。 3. a3读作“a的立方”表示3个a相乘,(即a×a×a) 4. 长方体的棱长和 =(长+宽+高)×4;正方体的棱长和 =棱长×12 5. 长方体6个面的面积之和叫做长方体的表面积。 长方体上表面或下表面的面积=长×宽,用字母表示为:

底面积S = a×b

长方体的表面积=长×宽×2+长×高×2 +宽×高×2,用字母表示为:

表面积S = a×b×2+ a×h×2 +b×h×2

以上内容请同学们务必多理解、多运用!! 第3页

列西托管中心整理

5. 正方体的6个面的面积之和叫做正方体的表面积。 正方体每个面的面积=棱长×棱长。表面积等于所有面的总和,有 6个相同的面,所以正方体的表面积=6×每个面的面积=6×棱长×棱长,用字母表示为:

S = 6×a2 6. 正方体露在外面的面积=一个面的面积×露在外面的面的个数。把正方体放在桌面上,最

多可以看见三个面。

7. 物体所占空间的大小,称物体的体积。常用的体积单位有立方米,立方分米,立方厘米。 8. 容器所能容纳物体的体积,叫做容器的容积。常用的容积单位有升和毫升。 9. 计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。 10.单位换算:

1立方米=1000立方分米 1立方分米=1升 1立方米=1000000立方厘米 1升=1000毫升 1立方分米=1000立方厘米 1立方厘米=1毫升

11. 相邻的的体积单位之间的互化。进率表示单位之间差10的多少倍。 ÷进率

低级单位 高级单位

×进率

12. 测量不规则形状的物体的体积时,可以将不规则物体放入盛有水的容器中,上升的水的体积或者溢出的水的体积就是这个物体的体积。

13. 一般来说,一个物体的体积比它的容积大(想想为什么?)。 四、百分数

22写作22%,读作:百分之二十二。 1002. 求一个数的几分之几(或百分之几)是多少,用乘法计算;

1. 百分数表示一个数是另一个数的百分之几。

已知一个数的几分之几是多少,求这个数,用除法计算。 3. 百分数也叫百分比、百分率。 4. 生活中的“率”:

及格率=及格的人数÷总人数 出勤率=出勤人数÷总人数 成活率=成活的棵数÷种植的总棵数 命中率=命中次数÷总次数 出粉率=面粉的重量÷小麦的重量 优秀率=优秀人数÷总人数 合格率=合格的产品数÷产品总数 发芽率=发芽的种子数÷种子总数 5. 小数化成百分数:先把小数点向右(→)移动两位,再在后面添上%(0.20→20→20%)。 6. 分数化成百分数:先把分数化成小数(除不尽时保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先去掉%,再把小数点向左(←)移动两位(20%→20→0.20→0.2)。 8. 百分数化成分数:先把百分数化成分母是100的分数,然后约分、化简;或者先把百分数化成小数,再化成分数。

五、统计

1. 条形统计图能清楚地看出每个项目的数量,并且方便进行比较。 2. 扇形统计图能清楚地看出各部分分别占总量的百分之几。 3. 折线统计图能清楚地看出数量的变化情况。

以上内容请同学们务必多理解、多运用!! 第4页

列西托管中心整理

4. 一组数据中出现次数最多的数叫这组数据的众数。

5. 把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数。当一组数据的个数是偶数时,中位数取中间两个数的平均数。 6. 平均数=总数量÷总份数

长方体和正方体公式大总结

(1)长方体公式:

? 长方体棱长之和 =(长+宽+高)×4

逆运用:长 = 长方体棱长之和÷4-宽-高

长方体的高 = 长方体棱长之和÷4-长-宽

? 相交于一个顶点的三条棱的和 = 长+宽+高÷4 = 长方体棱长之和÷4

? 底面积(占地面积、上面积)= 长×宽

? 左(右)面积 = 宽×高;前(后)面积 = 长×高 ? 表面积 =(长×宽+长×高+宽×高)×2

? 没盖长方体的表面积 = 长×宽+(长×高+宽×高)×2

或=(长×宽+长×高+宽×高)×2-长×宽

? 长方体或正方体侧面面积(就是周围四个面的面积)= 底面周长×高

或 =(长×高+宽×高)×2

? 求通气管、烟囱或粉刷柱子是计算四个面的面积

? 体积(容积)=长×宽×高,用公式表示是:V=a×b×h

逆运用:高=长方体体积(容积)÷长÷宽 = 长方体体积(容积)÷(长×宽) 或高=长方体体积(容积)÷底面积

? 长方体的体积 = 一个侧面积×长 = 一个横截面面积×高(请画图理解!)

(2)正方体公式:正方体是特殊的长方体,其各个边长相等,统称棱长。 ? 正方体的棱长和 = 棱长×12

逆运用:棱长 = 棱长和÷12

? 表面积=棱长×棱长×6 = 任意一个面积×6,用公式表示S=6a2

逆运用:正方体一个面的面积=棱长×棱长=正方体表面积÷6 ? 无盖的正方体的表面积=棱长×棱长×5

体积(容积)=棱长×棱长×棱长,用公式表示:V= a ×a× a = a3 ? 求小正方体的数量 = 每排的个数×排数×层数

? 至少要8块棱长为1厘米的小长方体拼成一个大正方体。

? 一个正方体棱长扩大a倍,棱长之和扩大a×a倍,表面积扩大a×a倍,体积扩大a×a×a倍。

(3)长方体和正方体都可以用公式(底面积×高)来计算。用公式表示:V=S×h (4)不规则物体的体积 = 容器底面长×容器底面宽×上升的水的高度

= 容器底面积×上升的水的高度

逆运用:上升的水的高度 = 不规则物体的体积÷容器底面长÷容器底面宽

= 不规则物体的体积÷容器底面积

所有公式请各位同学务必要:画图理解→背诵→熟练运用!!!

以上内容请同学们务必多理解、多运用!! 第5页

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

列西托管中心整理 北师大版五年级数学下册概念与公式整理版 一、分数乘法、分数除法 1. 分数乘法的意义:求几个相同分数的和的简便运算 2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算。 如:25÷5=? 已知两个乘数(因数)的积是25,其中的一个因数是5,求另一因数是多少? 3. 分数乘法的运算法则: 1)分数与整数相乘:分子和整数相乘,分母不变; 2)分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。 4. 分数除法的运算法则: 1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数; 2)一个数除以一个分数等于这个数乘以这个分数的倒数; 3)除以一个数(0除外)等于乘这个数的倒数; 4)当除数<1时,商大于被除数;(商就是得数) 5)当

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com