当前位置:首页 > 最新人教版八年级下册数学十六章二次根式复习教案
二次根式复习课
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子; 2.熟练地进行二次根式的加、减、乘、除混合运算. 教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 教学过程设计 一、复习
请同学们带着下列问题,复习一下全章内容吧 1.当X是怎样的实数时,x在实数范围内有意义?
2.什么叫最简二次根式?你能举出一些最简二次根式的例子吗? 3.请你分别举例说明二次根式的加减乘除运算法则。
4.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
5.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
解因为n-9≥0,9-n≥0,且n-3≠0,所以n=9且n≠3,所以
2
2
2
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.
解 因为1-a>0,3-a≥0,所以 a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
解
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
2
2
a+b=2(n+2),ab=(n+2)-(n-4)=4(n+2),
共分享92篇相关文档