云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 江苏省镇江市2016-2017学年高一第一学期期末数学试卷含解析

江苏省镇江市2016-2017学年高一第一学期期末数学试卷含解析

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 17:28:05

【考点】函数的零点与方程根的关系.

【分析】若互不相等的实数a,b,使f(a)=f(b),则1ga=﹣lgb,结合对数的运算性质,可得答案.

【解答】解:∵函数f(x)=|lgx|, 若互不相等的实数a,b,使f(a)=f(b), 则1ga=﹣lgb,

即lga+lgb=lg(ab)=0, ∴ab=1, 故答案为:1

8.= 4 .函数y=ax﹣4+1图象恒过定点P,且P在幂函数y=f(x)图象上,则f(16)

【考点】指数函数的单调性与特殊点.

【分析】设幂函数f(x)=xα(α是常数),由a0=1求出y=ax﹣4+1的图象恒过定点P的坐标,代入函数f(x)的解析式求出α的值,再求出f(16)的值. 【解答】解:设幂函数f(x)=xα(α是常数), 由x﹣4=0得x=4,则y=2,

所以函数y=ax﹣4+1图象恒过定点P(4,2), 由题意得,2=4α,解得则f(x)=

,所以f(16)=4,

故答案为:4.

9.函数f(x)=2sin(x﹣)在[0,2π]内的递减区间是 [,] .

【考点】正弦函数的单调性.

【分析】利用正弦函数的单调性,求得数f(x)=2sin(x﹣减区间.

【解答】解:对于函数f(x)=2sin(x﹣得2kπ+

≤x≤2kπ+

,2kπ+

],k∈Z.

],

),令2kπ+

≤x﹣

≤2kπ+

,求

)在[0,2π]内的递

可得函数的减区间为[2kπ+

再结合x∈[0,2π],可得函数在[0,2π]内的递减区间是[

故答案为:[

,].

10.若函数f(x)=

【考点】函数奇偶性的判断.

是奇函数,则实数a= 1 .

【分析】由题意,f(﹣x)=﹣f(x),即值.

【解答】解:由题意,f(﹣x)=﹣f(x),即∴(﹣x﹣a)(﹣x+1)=(x﹣a)(x+1), ∴a=1, 故答案为1.

11.已知函数f(x)=

【考点】其他不等式的解法.

=﹣,可得a的

=﹣,

,则不等式f(x)<2的解集是 (﹣1,1) .【分析】根据函数的解析式对x分类讨论,分别由指数函数的性质、一元二次不等

式的解法求出对应的解集,最后再求出并集,即可得到不等式f(x)<2的解集.

【解答】解:由题意知,f(x)=

①当x>0时,不等式f(x)<2为2x<2, 解得x<1,即0<x<1; ②当x≤0时,不等式f(x)<2为x2+1<2, 解得﹣1<x<1,即﹣1<x≤0, 综上,不等式的解集是(﹣1,1), 故答案为:(﹣1,1).

12.求值:

= 1 .

【考点】三角函数的化简求值.

【分析】将cos27°拆成cos(45°﹣18°)打开利用和差公式可得答案. 【

=

=

故答案为1.

13.方程2sinπx﹣lgx2=0实数解的个数是 20 . 【考点】函数的零点与方程根的关系.

=

【分析】方程2sinπx﹣lgx2=0,可化为方程sinπx﹣lg|x|=0,即求y=sinπx与y=lg|x|交点的个数,利用图象,可得结论.

【解答】解:方程2sinπx﹣lgx2=0,可化为方程sinπx﹣lg|x|=0,即求y=sinπx与y=lg|x|交点的个数, 大致图象,如图所示

由图象可得,交点个数为20, 故答案为20.

14.设定义在[﹣π,π]上的函数f(x)=cosx﹣4x2,则不等式f(lnx)+π2>0的解集是 (0,

)∪(

,+∞) .

【考点】利用导数研究函数的单调性.

【分析】根据函数f(x)的单调性求出f(lnx)>﹣π2=f(等式,解出即可.

),得到关于lnx的不

【解答】解:f′(x)=﹣sinx﹣8x,f″(x)=﹣cosx﹣8<0, 故f′(x)在[﹣π,π]递减, 而f′(0)=0,

故x∈[﹣π,0)时,f′(x)>0,x∈(0,π]时,f′(x)<0, 故f(x)在[﹣π,0)递增,在(0,π]递减, 而f(x)=f(﹣x),f(x)在[﹣π,π]是偶函数, f(

)=f(﹣

)=﹣π2,

不等式f(lnx)+π2>0, 即f(lnx)>﹣π2=f(故lnx>|

),

,或lnx>,

,+∞).

|,故lnx<﹣

或x>)∪(

解得:0<x<故答案为:(0,

二、解答题(共6小题,满分90分) 15.U=R,已知实数a为常数,设集合A={x|﹣(4+a)x+4a≤0}. (1)求A∩B; (2)若?UA?C,求a的取值范围. 【考点】交、并、补集的混合运算.

【分析】(1)求出集合A、B,再根据交集的定义写出A∩B; (2)由补集与子集的定义,列出不等式组,求出解集即可. 【解答】解:(1)集合A={x|B={x|y=

>0}={x|x<﹣1x>3},

B={x|y=>0},

C={x|x2},

}={x|log2x﹣1≥0}={x|x≥2},

∴A∩B={x|x>3};

(2)又?UA={x|﹣1≤x≤3},

C={x|x2﹣(4+a)x+4a≤0}={x|(x﹣4)(x﹣a)≤0}, 若?UA?C,则

∴a的取值范围是a≤﹣1.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

【考点】函数的零点与方程根的关系. 【分析】若互不相等的实数a,b,使f(a)=f(b),则1ga=﹣lgb,结合对数的运算性质,可得答案. 【解答】解:∵函数f(x)=|lgx|, 若互不相等的实数a,b,使f(a)=f(b), 则1ga=﹣lgb, 即lga+lgb=lg(ab)=0, ∴ab=1, 故答案为:1 8.= 4 .函数y=ax﹣4+1图象恒过定点P,且P在幂函数y=f(x)图象上,则f(16)【考点】指数函数的单调性与特殊点. 【分析】设幂函数f(x)=xα(α是常数),由a0=1求出y=ax﹣4+1的图象恒过定点P的坐标,代入函数f(x)的解析式求出α的值,再求出f(16)的值. 【解答】解:设幂函数f(x)=xα(α是常数), 由x﹣4=0得x=4,则y=2

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com